Sensing with Thermally Reduced Graphene Oxide under Repeated Large Multi-Directional Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Synthesis
2.2. Imaging Using Confocal Microscope
2.3. Tensile Test Set-Up and Measurement Method
2.4. Repeatability and Hysteresis
3. Results and Discussion
3.1. Microscopic Imaging
3.1.1. Propagation and Accumulation of Cracks
3.1.2. Locally Distributed Cracks
3.1.3. Crack Propagation and Stabilization after the First Cycle
3.2. Relative Resistance Change in the -Direction (between A and D)
3.2.1. Experimental Observation
3.2.2. Mathematical Analysis
- Region 1
- Region 2
3.3. Relative Resistance Change in the -Direction (between A and B)
3.4. Relative Resistance Change at a 45° Angle (between A and C)
3.5. Stabilization beyond Initial Strain Application and Removal
3.6. Hysteresis and Recovery Analysis
3.7. Future Work
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fraden, J. Handbook of Modern Sensors, 4th ed.; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6465-6. [Google Scholar]
- Pei, Y.; Liao, T.; Pei, Y.; Xu, J.; Lin, H.; Ning, T. FBG Strain Sensor Applied in Harsh Environment of Aerospace. In Proceedings of the 2018 IEEE 3rd Optoelectronics Global Conference (OGC), Shenzhen, China, 4–7 September 2018; pp. 81–84. [Google Scholar]
- Dang, W.; Hosseini, E.S.; Dahiya, R. Soft Robotic Finger with Integrated Stretchable Strain Sensor. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 2006, 15, 737–748. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; Fan, X.; He, Z. Sub-Nano-Strain Multiplexed Fiber Optic Sensor Array for Quasi-Static Strain Measurement. IEEE Photonics Technol. Lett. 2016, 28, 2311–2314. [Google Scholar] [CrossRef]
- Yazdi, A.; Tsai, L.-C.; Rezaee, M.; Gore, S.; Salowitz, N. Low Flow Rate Measurement and Leak Detection for Health Monitoring of Water Equipment. In Proceedings of the 10th European Workshop on Structural Health Monitoring (10th EWSHM), Palermo, Italy, 4–7 July 2022; Springer Nature: Palermo, Italy, 2023; pp. 963–971. [Google Scholar]
- Khakpour, R.; Mansouri, S.; Bahadorimehr, A.R. Analytical Comparison for Square, Rectangular and Circular Diaphragms in MEMS Applications. In Proceedings of the 2010 International Conference on Electronic Devices, Systems and Applications, Kuala Lumpur, Malaysia, 11–14 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 297–299. [Google Scholar]
- Huang, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Wu, Y.; Peng, J.; Xu, Y.; Li, H.; He, H.; Tai, H. A Finger Motion Monitoring Glove for Hand Rehabilitation Training and Assessment Based on Gesture Recognition. IEEE Sens. J. 2023, 23, 13789–13796. [Google Scholar] [CrossRef]
- Petronienė, J.J.; Dzedzickis, A.; Morkvėnaitė-Vilkončienė, I.; Bučinskas, V. Flexible Strain Sensors: Recent Progress 2016–2023. Sens. Actuators A Phys. 2024, 366, 114950. [Google Scholar] [CrossRef]
- Liu, B.; Pang, J.; Tu, X.; Zhou, Z. Three Components Strain-Gauge Type Aircraft Surface Friction Resistance Sensor: Design, Manufacturing, and Calibration. Measurement 2023, 218, 113165. [Google Scholar] [CrossRef]
- Boursier Niutta, C.; Tridello, A.; Ciardiello, R.; Paolino, D.S. Strain Measurement with Optic Fibers for Structural Health Monitoring of Woven Composites: Comparison with Strain Gauges and Digital Image Correlation Measurements. Sensors 2023, 23, 9794. [Google Scholar] [CrossRef]
- Mora, B.; Basurko, J.; Sabahi, I.; Leturiondo, U.; Albizuri, J. Strain Virtual Sensing for Structural Health Monitoring under Variable Loads. Sensors 2023, 23, 4706. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhong, M.; Li, S.; Qing, Z.; Xing, X.; Gong, G.; Yan, R.; Qin, W.; Shen, J.; Zhang, H.; et al. Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals. Polymers 2023, 15, 3553. [Google Scholar] [CrossRef]
- Kaidarova, A.; Khan, M.A.; Marengo, M.; Swanepoel, L.; Przybysz, A.; Muller, C.; Fahlman, A.; Buttner, U.; Geraldi, N.R.; Wilson, R.P.; et al. Wearable Multifunctional Printed Graphene Sensors. npj Flex. Electron. 2019, 3, 15. [Google Scholar] [CrossRef]
- Yao, H.; Hempel, M.; Hsieh, Y.-P.; Kong, J.; Hofmann, M. Characterizing Percolative Materials by Straining. Nanoscale 2019, 11, 1074–1079. [Google Scholar] [CrossRef]
- Marsden, A.J.; Papageorgiou, D.G.; Vallés, C.; Liscio, A.; Palermo, V.; Bissett, M.A.; Young, R.J.; Kinloch, I.A. Electrical Percolation in Graphene–Polymer Composites. 2D Mater 2018, 5, 032003. [Google Scholar] [CrossRef]
- Lyons, P.E.; De, S.; Elias, J.; Schamel, M.; Philippe, L.; Bellew, A.T.; Boland, J.J.; Coleman, J.N. High-Performance Transparent Conductors from Networks of Gold Nanowires. J. Phys. Chem. Lett. 2011, 2, 3058–3062. [Google Scholar] [CrossRef]
- De, S.; King, P.J.; Lyons, P.E.; Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano 2010, 4, 7064–7072. [Google Scholar] [CrossRef] [PubMed]
- Sorel, S.; Lyons, P.E.; De, S.; Dickerson, J.C.; Coleman, J.N. The Dependence of the Optoelectrical Properties of Silver Nanowire Networks on Nanowire Length and Diameter. Nanotechnology 2012, 23, 185201. [Google Scholar] [CrossRef] [PubMed]
- De, S.; King, P.J.; Lotya, M.; O’Neill, A.; Doherty, E.M.; Hernandez, Y.; Duesberg, G.S.; Coleman, J.N. Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions. Small 2010, 6, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Nolan, H.; McEvoy, N.; Keeley, G.P.; Callaghan, S.D.; McGuinness, C.; Duesberg, G.S. Nitrogen-Doped Pyrolytic Carbon Films as Highly Electrochemically Active Electrodes. Phys. Chem. Chem. Phys. 2013, 15, 18688. [Google Scholar] [CrossRef]
- Seika, M.; Hosono, K. Fundamental Study on a Foil Strain Gauge of Electrodeposited Nickel. Bull. JSME 1982, 25, 1240–1246. [Google Scholar] [CrossRef]
- Abot, J.; Góngora-Rubio, M.; Anike, J.; Kiyono, C.; Mello, L.A.; Cardoso, V.; Rosa, R.L.; Kuebler, D.; Brodeur, G.; Alotaibi, A.; et al. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration. Sensors 2018, 18, 464. [Google Scholar] [CrossRef]
- O’Mara, M.A.; Ogilvie, S.P.; Large, M.J.; Amorim Graf, A.; Sehnal, A.C.; Lynch, P.J.; Salvage, J.P.; Jurewicz, I.; King, A.A.K.; Dalton, A.B. Ultrasensitive Strain Gauges Enabled by Graphene-Stabilized Silicone Emulsions. Adv. Funct. Mater. 2020, 30, 2002433. [Google Scholar] [CrossRef]
- Yang, S.; Lu, N. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges. Sensors 2013, 13, 8577–8594. [Google Scholar] [CrossRef]
- Ma, Z.; Wei, A.; Li, Y.; Shao, L.; Zhang, H.; Xiang, X.; Wang, J.; Ren, Q.; Kang, S.; Dong, D.; et al. Lightweight, Flexible and Highly Sensitive Segregated Microcellular Nanocomposite Piezoresistive Sensors for Human Motion Detection. Compos. Sci. Technol. 2021, 203, 108571. [Google Scholar] [CrossRef]
- Soe, H.M.; Manaf, A.A.; Matsuda, A.; Jaafar, M. Development and Fabrication of Highly Flexible, Stretchable, and Sensitive Strain Sensor for Long Durability Based on Silver Nanoparticles–Polydimethylsiloxane Composite. J. Mater. Sci. Mater. Electron. 2020, 31, 11897–11910. [Google Scholar] [CrossRef]
- Tanner, J.L.; Mousadakos, D.; Broutas, P.; Chatzandroulis, S.; Raptis, Y.S.; Tsoukalas, D. Nanoparticle Strain Sensor. Procedia Eng. 2011, 25, 635–638. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Yang, S.; Jiao, W.; Xiao, S.; Zou, M.; Yuan, S.; Xiao, F.; Wang, S.; Qian, L. Closely Packed Nanoparticle Monolayer as a Strain Gauge Fabricated by Convective Assembly at a Confined Angle. Nano Res. 2014, 7, 824–834. [Google Scholar] [CrossRef]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Abdul Kadir, A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, P.; Jośko, I.; Skwarek, E. Surfactants Decrease the Toxicity of ZnO, TiO2 and Ni Nanoparticles to Daphnia Magna. Ecotoxicology 2015, 24, 1923–1932. [Google Scholar] [CrossRef] [PubMed]
- Rani Bijukumar, D.; Segu, A.; Mou, Y.; Ghodsi, R.; Shokufhar, T.; Barba, M.; Li, X.-J.; Thoppil Mathew, M. Differential Toxicity of Processed and Non-Processed States of CoCrMo Degradation Products Generated from a Hip Simulator on Neural Cells. Nanotoxicology 2018, 12, 941–956. [Google Scholar] [CrossRef]
- Cheng, L.; Fang, G.; Wei, L.; Gao, W.; Wang, X.; Lv, Z.; Xu, W.; Ding, C.; Wu, H.; Zhang, W.; et al. Laser-Induced Graphene Strain Sensor for Conformable Lip-Reading Recognition and Human–Machine Interaction. ACS Appl. Nano Mater. 2023, 6, 7290–7298. [Google Scholar] [CrossRef]
- Wang, S.; Duan, S.; Yang, T.; He, Z.; Xia, Z.; Zhao, Y. A Self-Powered Strain Sensor Utilizing Hydrogel-Nanosheet Composites, Zn Foil, and Silver-Coated Nylon. Sens. Actuators A Phys. 2023, 364, 114824. [Google Scholar] [CrossRef]
- Maurya, D.; Khaleghian, S.; Sriramdas, R.; Kumar, P.; Kishore, R.A.; Kang, M.G.; Kumar, V.; Song, H.-C.; Lee, S.-Y.; Yan, Y.; et al. 3D Printed Graphene-Based Self-Powered Strain Sensors for Smart Tires in Autonomous Vehicles. Nat. Commun. 2020, 11, 5392. [Google Scholar] [CrossRef]
- Iqra, M.; Anwar, F.; Jan, R.; Mohammad, M.A. A Flexible Piezoresistive Strain Sensor Based on Laser Scribed Graphene Oxide on Polydimethylsiloxane. Sci. Rep. 2022, 12, 4882. [Google Scholar] [CrossRef]
- Irani, F.S.; Shafaghi, A.H.; Tasdelen, M.C.; Delipinar, T.; Kaya, C.E.; Yapici, G.G.; Yapici, M.K. Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines 2022, 13, 119. [Google Scholar] [CrossRef]
- Rinaldi, A.; Proietti, A.; Tamburrano, A.; Ciminello, M.; Sarto, M.S. Graphene-Based Strain Sensor Array on Carbon Fiber Composite Laminate. IEEE Sens. J. 2015, 15, 7295–7303. [Google Scholar] [CrossRef]
- Casallas Caicedo, F.M.; Vera López, E.; Agarwal, A.; Drozd, V.; Durygin, A.; Franco Hernandez, A.; Wang, C. Synthesis of Graphene Oxide from Graphite by Ball Milling. Diam. Relat. Mater. 2020, 109, 108064. [Google Scholar] [CrossRef]
- Chong, K.Y.; Chia, C.H.; Chook, S.W.; Zakaria, S.; Lucas, D. Simplified Production of Graphene Oxide Assisted by High Shear Exfoliation of Graphite with Controlled Oxidation. New J. Chem. 2018, 42, 4507–4512. [Google Scholar] [CrossRef]
- Rezaee, M.; Tsai, L.-C.; Haider, M.I.; Yazdi, A.; Sanatizadeh, E.; Salowitz, N.P. Quantitative Peel Test for Thin Films/Layers Based on a Coupled Parametric and Statistical Study. Sci. Rep. 2019, 9, 19805. [Google Scholar] [CrossRef]
- Tsai, L.-C.; Rezaee, M.; Haider, M.I.; Yazdi, A.; Salowitz, N.P. Quantitative Measurement of Thin Film Adhesion Force. In Proceedings of the ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019, Louisville, KS, USA, 9–11 September 2019. [Google Scholar]
- Taheri, N.N.; Ramezanzadeh, B.; Mahdavian, M. Application of Layer-by-Layer Assembled Graphene Oxide Nanosheets/Polyaniline/Zinc Cations for Construction of an Effective Epoxy Coating Anti-Corrosion System. J. Alloys Compd. 2019, 800, 532–549. [Google Scholar] [CrossRef]
- Azlina, Y.; Azlan, M.N.; Hajer, S.S.; Halimah, M.K.; Suriani, A.B.; Umar, S.A.; Hisam, R.; Zaid, M.H.M.; Iskandar, S.M.; Kenzhaliyev, B.K.; et al. Graphene Oxide Deposition on Neodymium Doped Zinc Borotellurite Glass Surface: Optical and Polarizability Study for Future Fiber Optics. Opt. Mater. 2021, 117, 111138. [Google Scholar] [CrossRef]
- Rezaee, M.; Chih Tsai, L.; Elyasigorji, A.; Istiaque Haider, M.; Yazdi, A.; Salowitz, N.P. Quantification of the Mechanical Strength of Thermally Reduced Graphene Oxide Layers on Flexible Substrates. Eng. Fract. Mech. 2021, 243, 107525. [Google Scholar] [CrossRef]
- Gong, C.; Acik, M.; Abolfath, R.M.; Chabal, Y.; Cho, K. Graphitization of Graphene Oxide with Ethanol during Thermal Reduction. J. Phys. Chem. C 2012, 116, 9969–9979. [Google Scholar] [CrossRef]
- Ho, C.-Y.; Wang, H.-W. Characteristics of Thermally Reduced Graphene Oxide and Applied for Dye-Sensitized Solar Cell Counter Electrode. Appl. Surf. Sci. 2015, 357, 147–154. [Google Scholar] [CrossRef]
- Chong, S.W.; Lai, C.W.; Abd Hamid, S.B. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells. Materials 2016, 9, 69. [Google Scholar] [CrossRef]
- Yazdi, A.; Tsai, L.-C.; Salowitz, N. Investigation of the Resistive Response of Reduced Graphene Oxide for Sensing Large Strains (>10%). In Proceedings of the ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Dearborn, MI, USA, 12–14 September 2022; American Society of Mechanical Engineers: New York, NY, USA, 2022. [Google Scholar]
- Xu, M.; Qi, J.; Li, F.; Zhang, Y. Highly Stretchable Strain Sensors with Reduced Graphene Oxide Sensing Liquids for Wearable Electronics. Nanoscale 2018, 10, 5264–5271. [Google Scholar] [CrossRef]
- Reghat, M.; Fuss, F.K.; Middendorf, P.; Bjekovic, R.; Hyde, L.; Hameed, N.; Fox, B. Strain Monitoring in Reduced Graphene Oxide-Coated Glass Fiber/Epoxy Composite. Polym. Compos. 2022, 43, 7913–7927. [Google Scholar] [CrossRef]
- Rezaee, M. Bonding Evaluation of Graphene-Oxide Layers on Flexible Substrates; University of Wisconsin Milwaukee: Milwaukee, WI, USA, 2021. [Google Scholar]
- The Dow Chemical Company (“Dow”) SYLGARDTM 186 Silicone Elastomer Technical Datasheet. Available online: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-12/11-1253-sylgard-186-silicone-elastomer.pdf?iframe=true (accessed on 7 July 2020).
- Corporation, M. Milli-Q® Advantage A10® System User Manual. Available online: http://membrane.ces.utexas.edu/files/docs/Millipore_Milli-Q-Manual.pdf (accessed on 7 July 2020).
- Plasma Etch Palsma Etch PE-25 Plasma Etcher Datasheet. Available online: https://www.plasmaetch.com/images/pe25-flyer.pdf (accessed on 7 July 2020).
- Yazdi, A.; Tsai, L.-C.; Salowitz, N. Effect of Area Density on Sensitivity and Strain Survival of Reduced Graphene Oxide under Large Strains. In Proceedings of the ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Austin, TX, USA, 11–13 September 2023; American Society of Mechanical Engineers: New York, NY, USA, 2023. [Google Scholar]
- MTI Corporation OTF-1200 Series Split Tube Furnaces Operational Manual. Available online: https://www.ti.com/lit/ds/symlink/ina125.pdf?ts=1594693485905&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FINA125 (accessed on 7 July 2020).
- Gilanizadehdizaj, G.; Aw, K.C.; Stringer, J.; Bhattacharyya, D. Facile Fabrication of Flexible Piezo-Resistive Pressure Sensor Array Using Reduced Graphene Oxide Foam and Silicone Elastomer. Sens. Actuators A Phys. 2022, 340, 113549. [Google Scholar] [CrossRef]
- Mikhaylov, P.A.; Vinogradov, M.I.; Levin, I.S.; Shandryuk, G.A.; Lubenchenko, A.V.; Kulichikhin, V.G. Synthesis and Characterization of Polyethylene Terephthalate-Reduced Graphene Oxide Composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 693, 012036. [Google Scholar] [CrossRef]
- Altinay, Y.; Gökoğlan, E.; Yener, Ç.; Ünlü, G.; Şahin, B. SILAR Processing and Characterization of Bare and Graphene Oxide (GO) and Reduced Graphene Oxide (RGO)-Doped CuO Thin Films. Appl. Phys. A 2022, 128, 784. [Google Scholar] [CrossRef]
- Yasin, G.; Arif, M.; Shakeel, M.; Dun, Y.; Zuo, Y.; Khan, W.Q.; Tang, Y.; Khan, A.; Nadeem, M. Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: Manipulating the Effect of Deposition Current Density on Its Morphology, Mechanical Properties, and Erosion-Corrosion Performance. Adv. Eng. Mater. 2018, 20, 1701166. [Google Scholar] [CrossRef]
- Liu, W.; Speranza, G. Tuning the Oxygen Content of Reduced Graphene Oxide and Effects on Its Properties. ACS Omega 2021, 6, 6195–6205. [Google Scholar] [CrossRef]
- CircuitWorks Conductive Epoxy Technical Data Sheet. Available online: https://www.chemtronics.com/content/msds/TDS_CW2400.pdf (accessed on 9 March 2024).
- Yokus, M.A.; Jur, J.S. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording. IEEE Trans. Biomed. Eng. 2016, 63, 423–430. [Google Scholar] [CrossRef]
- Cho, H.S.; Kim, H.A.; Seo, D.W.; Jeoung, S.C. Poisson’s Ratio Measurement through Engraving the Grid Pattern inside Poly(Dimethylsiloxane) by Ultrafast Laser. Jpn. J. Appl. Phys. 2021, 60, 101004. [Google Scholar] [CrossRef]
- Alexander, C.K.; Matthew, S. Fundamentals of Electric Circuits, 7th ed.; McGraw-Hill: New York, NY, USA, 2020. [Google Scholar]
- Sahini, M.; Sahimi, M. Applications of Percolation Theory; CRC Press: Boca Raton, FL, USA, 1994; ISBN 9780429080449. [Google Scholar]
- Clayton, M.F.; Bilodeau, R.A.; Bowden, A.E.; Fullwood, D.T. Nanoparticle Orientation Distribution Analysis and Design for Polymeric Piezoresistive Sensors. Sens. Actuators A Phys. 2020, 303, 111851. [Google Scholar] [CrossRef]
- Ugural, A.C.; Fenster, S.K. Advanced Mechanics of Materials and Applied Elasticity, 5th ed.; Prentice Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ugural, A.C. Mechanics of Materials, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- James, L.; Meriam, L.G.; Kraige, J.N.B. Engineering Mechanics: Statics; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Timoshenko, S. Strength of Materials 3Ed Part 1 Elementary Theory and Problems, 3rd ed.; CBS Publishers and Distirbutors: Delhi, India, 2002. [Google Scholar]
- Yazdi, A. Investigation into Strain Sensing with Reduced Graphene Oxide, and Applications in Low-Cost Leak Detection and Health Monitoring of Water Equipment; University of Wisconsin Milwaukee: Milwaukee, WI, USA, 2023. [Google Scholar]
- Pan, S.; Makinwa, K.A.A. Wheatstone Bridge–Based Temperature Sensors. In Resistor-Based Temperature Sensors in CMOS Technology; Springer International Publishing: Cham, Switzerland, 2022; pp. 67–106. ISBN 978-3-030-95284-6. [Google Scholar]
- Hsieh, C.-C.; Hung, C.-C.; Li, Y.-H. Investigation of a Pressure Sensor with Temperature Compensation Using Two Concentric Wheatstone-Bridge Circuits. Mod. Mech. Eng. 2013, 3, 104–113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdi, A.; Tsai, L.-C.; Salowitz, N.P. Sensing with Thermally Reduced Graphene Oxide under Repeated Large Multi-Directional Strain. Sensors 2024, 24, 5739. https://doi.org/10.3390/s24175739
Yazdi A, Tsai L-C, Salowitz NP. Sensing with Thermally Reduced Graphene Oxide under Repeated Large Multi-Directional Strain. Sensors. 2024; 24(17):5739. https://doi.org/10.3390/s24175739
Chicago/Turabian StyleYazdi, Armin, Li-Chih Tsai, and Nathan P. Salowitz. 2024. "Sensing with Thermally Reduced Graphene Oxide under Repeated Large Multi-Directional Strain" Sensors 24, no. 17: 5739. https://doi.org/10.3390/s24175739