Ultrasound Control of Pickering Emulsion-Based Capsule Preparation
Abstract
:1. Introduction
2. Results
2.1. Frequency Dependence of Ultrasound Velocity for Emulsions and Capsules
2.2. Frequency Dependence of Ultrasound Attenuation for Emulsions and Capsules
2.3. Optical Microscopy Images of Emulsions and Capsules Prepared via Magnetic Heating
2.4. Ultrasound Velocity and Attenuation Coefficients for a Single Frequency
3. Discussion
4. Materials and Methods
4.1. Particles and Oils
4.2. Preparation of Pickering Emulsion-Based Capsules
4.3. Ultrasound Measurement
4.4. Optical Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zhang, R.; McClements, D.J. Lactase (β-Galactosidase) Encapsulation in Hydrogel Beads with Controlled Internal pH Microenvironments: Impact of Bead Characteristics on Enzyme Activity. Food Hydrocoll. 2017, 67, 85–93. [Google Scholar] [CrossRef]
- Bielas, R.; Surdeko, D.; Kaczmarek, K.; Józefczak, A. The Potential of Magnetic Heating for Fabricating Pickering-Emulsion-Based Capsules. Colloids Surf. B Biointerfaces 2020, 192, 111070. [Google Scholar] [CrossRef]
- Zhang, Y.; Abidi, W.; Berlin, J.M. Colloidal Capsules Assembled from Gold Nanoparticles Using Small-Molecule Hydrophobic Cross-Linkers. Langmuir ACS J. Surf. Colloids 2019, 35, 17037–17045. [Google Scholar] [CrossRef]
- Arumugam, P.; Patra, D.; Samanta, B.; Agasti, S.S.; Subramani, C.; Rotello, V.M. Self-Assembly and Cross-Linking of FePt Nanoparticles at Planar and Colloidal Liquid–Liquid Interfaces. J. Am. Chem. Soc. 2008, 130, 10046–10047. [Google Scholar] [CrossRef]
- Schmid, A.; Tonnar, J.; Armes, S.P. A New Highly Efficient Route to Polymer-Silica Colloidal Nanocomposite Particles. Adv. Mater. 2008, 20, 3331–3336. [Google Scholar] [CrossRef]
- Pham, S.T.; Tieu, A.K.; Sencadas, V.; Joseph, P.; Arun, M.; Cortie, D. Thermoresponsive Hybrid Colloidal Capsules as an Inorganic Additive for Fire-Resistant Silicone-Based Coatings. Ind. Eng. Chem. Res. 2022, 61, 13104–13116. [Google Scholar] [CrossRef]
- Li, M.; Harbron, R.L.; Weaver, J.V.M.; Binks, B.P.; Mann, S. Electrostatically Gated Membrane Permeability in Inorganic Protocells. Nat. Chem. 2013, 5, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Cairns, A.J.; Liu, Y.; Belmabkhout, Y.; Zeng, H.C.; Eddaoudi, M. Synthesis and Integration of Fe-Soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach. J. Am. Chem. Soc. 2013, 135, 10234–10237. [Google Scholar] [CrossRef]
- Paunov, V.N.; Panhuis, M.I.H. Fabrication of Carbon Nanotube-Based Microcapsules by a Colloid Templating Technique. Nanotechnology 2005, 16, 1522–1525. [Google Scholar] [CrossRef]
- Grzegorzewski, F.; Benhaim, A.; Itzhaik Alkotzer, Y.; Zelinger, E.; Yaakov, N.; Mechrez, G. In Situ Fabrication of Multi-Walled Carbon Nanotubes/Silica Hybrid Colloidosomes by Pickering Emulsion Templating Using Trialkoxysilanes of Opposite Polarity. Polymers 2019, 11, 1480. [Google Scholar] [CrossRef] [PubMed]
- Noble, P.F.; Cayre, O.J.; Alargova, R.G.; Velev, O.D.; Paunov, V.N. Fabrication of “Hairy” Colloidosomes with Shells of Polymeric Microrods. J. Am. Chem. Soc. 2004, 126, 8092–8093. [Google Scholar] [CrossRef]
- Russell, J.T.; Lin, Y.; Böker, A.; Su, L.; Carl, P.; Zettl, H.; He, J.; Sill, K.; Tangirala, R.; Emrick, T.; et al. Self-Assembly and Cross-Linking of Bionanoparticles at Liquid–Liquid Interfaces. Angew. Chem. Int. Ed. 2005, 44, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kumar, R.; Jain, V.K.; Nagpal, S. Comparison of Virosome vs. Liposome as Drug Delivery Vehicle Using HepG2 and CaCo2 Cell Lines. J. Microencapsul. 2021, 38, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Aichi, A.; Muraoka, M.; Kishimoto, N.; Iwahori, K.; Nakamura, Y.; Yamashita, I. Ferritin as a Bionano-Particulate Emulsifier. J. Colloid Interface Sci. 2009, 338, 222–228. [Google Scholar] [CrossRef]
- Hickey, R.J.; Luo, Q.; Park, S.-J. Polymersomes and Multicompartment Polymersomes Formed by the Interfacial Self-Assembly of Gold Nanoparticles and Amphiphilic Polymers. ACS Macro Lett. 2013, 2, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Sukhorukov, G.B. UV-Induced Disruption of Microcapsules with Azobenzene Groups. Soft Matter 2014, 10, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, V.; Andersson Trojer, M.; Vavra, S.; Hulander, M.; Nordstierna, L. Formulation of Polyphthalaldehyde Microcapsules for Immediate UV-Light Triggered Release. J. Colloid Interface Sci. 2020, 579, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Esser-Kahn, A.P.; Odom, S.A.; Sottos, N.R.; White, S.R.; Moore, J.S. Triggered Release from Polymer Capsules. Macromolecules 2011, 44, 5539–5553. [Google Scholar] [CrossRef]
- Zhang, J.; Misra, R.D.K. Magnetic Drug-Targeting Carrier Encapsulated with Thermosensitive Smart Polymer: Core–Shell Nanoparticle Carrier and Drug Release Response. Acta Biomater. 2007, 3, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Zhu, Y.; Yang, X.; Shen, J.; Li, C. Ultrasound-Triggered Smart Drug Release from Multifunctional Core−Shell Capsules One-Step Fabricated by Coaxial Electrospray Method. Langmuir 2011, 27, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- White, A.L.; Langton, C.; Wille, M.-L.; Hitchcock, J.; Cayre, O.J.; Biggs, S.; Blakey, I.; Whittaker, A.K.; Rose, S.; Puttick, S. Ultrasound-Triggered Release from Metal Shell Microcapsules. J. Colloid Interface Sci. 2019, 554, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.P.R.; Cortez, C.; Angelatos, A.S.; Caruso, F. Layer-by-Layer Engineered Capsules and Their Applications. Curr. Opin. Colloid Interface Sci. 2006, 11, 203–209. [Google Scholar] [CrossRef]
- He, J.; Wei, Z.; Wang, L.; Tomova, Z.; Babu, T.; Wang, C.; Han, X.; Fourkas, J.T.; Nie, Z. Hydrodynamically Driven Self-Assembly of Giant Vesicles of Metal Nanoparticles for Remote-Controlled Release. Angew. Chem. Int. Ed. 2013, 52, 2463–2468. [Google Scholar] [CrossRef] [PubMed]
- Rasch, M.R.; Rossinyol, E.; Hueso, J.L.; Goodfellow, B.W.; Arbiol, J.; Korgel, B.A. Hydrophobic Gold Nanoparticle Self-Assembly with Phosphatidylcholine Lipid: Membrane-Loaded and Janus Vesicles. Nano Lett. 2010, 10, 3733–3739. [Google Scholar] [CrossRef] [PubMed]
- Challis, R.E.; Povey, M.J.W.; Mather, M.L.; Holmes, A.K. Ultrasound Techniques for Characterizing Colloidal Dispersions. Rep. Prog. Phys. 2005, 68, 1541–1637. [Google Scholar] [CrossRef]
- Shukla, A.; Prakash, A.; Rohani, S. Particles Settling Studies Using Ultrasonic Techniques. Powder Technol. 2007, 177, 102–111. [Google Scholar] [CrossRef]
- Tsuji, K.; Nakanishi, H.; Norisuye, T. Viscoelastic ECAH: Scattering Analysis of Spherical Particles in Suspension with Viscoelasticity. Ultrasonics 2021, 115, 106463. [Google Scholar] [CrossRef]
- Jameel, B.; Bielas, R.; Józefczak, A. Ultrasound Measurements of Particle Shells in Magnetic Pickering Emulsions. Measurement 2023, 220, 113409. [Google Scholar] [CrossRef]
- Bielas, R.; Rozynek, Z.; Hornowski, T.; Józefczak, A. Ultrasound Control of Oil-in-Oil Pickering Emulsions Preparation. J. Phys. Appl. Phys. 2020, 53, 085301. [Google Scholar] [CrossRef]
- Rozynek, Z.; Bielas, R.; Józefczak, A. Efficient Formation of Oil-in-Oil Pickering Emulsions with Narrow Size Distributions by Using Electric Fields. Soft Matter 2018, 14, 5140–5149. [Google Scholar] [CrossRef]
- Bielas, R.; Jameel, B.; Józefczak, A. Monitoring of Pickering Emulsion Stability during Magnetic Heating Using Ultrasound Measurements. Measurement 2021, 178, 109431. [Google Scholar] [CrossRef]
- Sankarappa, T.; Prashant Kumar, M.; Ahmad, A. Ultrasound Velocity and Density Studies in Some Refined and Unrefined Edible Oils. Phys. Chem. Liq. 2005, 43, 507–514. [Google Scholar] [CrossRef]
- McClements, D.J.; Povey, M.J.W.; Dickinson, E. Absorption and Velocity Dispersion Due to Crystallization and Melting of Emulsion Droplets. Ultrasonics 1993, 31, 433–437. [Google Scholar] [CrossRef]
- Lionetto, F.; Montagna, F.; Maffezzoli, A. Ultrasonic Dynamic Mechanical Analysis of Polymers. Appl. Rheol. 2005, 15, 326–335. [Google Scholar] [CrossRef]
- Ignee, A.; Atkinson, N.S.S.; Schuessler, G.; Dietrich, C. Ultrasound Contrast Agents. Endosc. Ultrasound 2016, 5, 355. [Google Scholar] [CrossRef]
- Carrey, J.; Mehdaoui, B.; Respaud, M. Simple Models for Dynamic Hysteresis Loop Calculations of Magnetic Single-Domain Nanoparticles: Application to Magnetic Hyperthermia Optimization. J. Appl. Phys. 2011, 109, 083921. [Google Scholar] [CrossRef]
- Bielas, R.; Jameel, B.; Skumiel, A.; Timko, M.; Kopčanský, P.; Józefczak, A. Magnetic Pickering Emulsions Heated in a Rotating Magnetic Field. J. Magn. Magn. Mater. 2022, 563, 169946. [Google Scholar] [CrossRef]
- Wang, X.; Salovey, R. Melting of Ultrahigh Molecular Weight Polyethylene. J. Appl. Polym. Sci. 1987, 34, 593–599. [Google Scholar] [CrossRef]
- Wunderlich, B.; Czornyj, G. A Study of Equilibrium Melting of Polyethylene. Macromolecules 1977, 10, 906–913. [Google Scholar] [CrossRef]
- Majewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of Microplastic Polyethylene (PE) and Polypropylene (PP) in Environmental Samples Using Thermal Analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Wiley, R.M. Limited Coalescence of Oil Droplets in Coarse Oil-in-Water Emulsions. J. Colloid Sci. 1954, 9, 427–437. [Google Scholar] [CrossRef]
- Suto, M.; Hirota, Y.; Mamiya, H.; Fujita, A.; Kasuya, R.; Tohji, K.; Jeyadevan, B. Heat Dissipation Mechanism of Magnetite Nanoparticles in Magnetic Fluid Hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1493–1496. [Google Scholar] [CrossRef]
- Bielas, R.; Hornowski, T.; Paulovičová, K.; Rajňák, M.; Józefczak, A. The Effect of Magnetic Particles Covering the Droplets on the Heating Rate of Pickering Emulsions in the AC Magnetic Field. J. Mol. Liq. 2020, 320, 114388. [Google Scholar] [CrossRef]
- Hornowski, T.; Józefczak, A.; Skumiel, A.; Łabowski, M. Effect of Poly(Ethylene Glycol) Coating on the Acoustic Properties of Biocompatible Magnetic Fluid. Int. J. Thermophys. 2010, 31, 70–76. [Google Scholar] [CrossRef]
- Liang, S.; Lashkari, B.; Choi, S.S.S.; Ntziachristos, V.; Mandelis, A. The Application of Frequency-Domain Photoacoustics to Temperature-Dependent Measurements of the Grüneisen Parameter in Lipids. Photoacoustics 2018, 11, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Norisuye, T.; Nakanishi, H.; Tran-Cong-Miyata, Q. Ultrasound Attenuation and Phase Velocity of Micrometer-Sized Particle Suspensions with Viscous and Thermal Losses. Ultrasonics 2018, 83, 171–178. [Google Scholar] [CrossRef]
- Norisuye, T.; Strybulevych, A.; Scanlon, M.; Page, J. Ultrasonic Investigation of the Gelation Process of Poly(Acrylamide) Gels. Macromol. Symp. 2006, 242, 208–215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratajczak, F.; Jameel, B.; Bielas, R.; Józefczak, A. Ultrasound Control of Pickering Emulsion-Based Capsule Preparation. Sensors 2024, 24, 5710. https://doi.org/10.3390/s24175710
Ratajczak F, Jameel B, Bielas R, Józefczak A. Ultrasound Control of Pickering Emulsion-Based Capsule Preparation. Sensors. 2024; 24(17):5710. https://doi.org/10.3390/s24175710
Chicago/Turabian StyleRatajczak, Filip, Bassam Jameel, Rafał Bielas, and Arkadiusz Józefczak. 2024. "Ultrasound Control of Pickering Emulsion-Based Capsule Preparation" Sensors 24, no. 17: 5710. https://doi.org/10.3390/s24175710