Absolute and Relative Reliability of Spatiotemporal Gait Characteristics Extracted from an Inertial Measurement Unit among Senior Adults Using a Passive Hip Exoskeleton: A Test–Retest Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. Gait Analysis
2.4. Exoskeleton
2.5. Data Analysis
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartmann, A.; Murer, K.; de Bie, R.A.; de Bruin, E.D. Reproducibility of spatio-temporal gait parameters under different conditions in older adults using a trunk tri-axial accelerometer system. Gait Amp. Posture 2009, 30, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Godfrey, A.; Rochester, L. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use. JBHI 2016, 20, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Micó-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Kirk, C.; Soltani, A.; Küderle, A.; Gazit, E.; Salis, F.; Alcock, L. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. J. Neuroeng Rehabil. 2023, 20, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Weir, J. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Almarwani, M.; Perera, S.; VanSwearingen, J.M.; Sparto, P.J.; Brach, J.S. The test–retest reliability and minimal detectable change of spatial and temporal gait variability during usual over-ground walking for younger and older adults. Gait Posture 2016, 44, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.; Esculier, J.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Rantalainen, T.; Karavirta, L.; Pirkola, H.; Rantanen, T.; Linnamo, V. Gait variability using waist-and ankle-worn inertial measurement units in healthy older adults. Sensors 2020, 20, 2858. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; DuMontier, C.; Yu, W.; Ask, L.; Zhou, J.; Testa, M.; Kim, D.; Abel, G.; Travison, T.; Manor, B. Validity and Reliability of a Smartphone Application for Home Measurement of Four-Meter Gait Speed in Older Adults. Bioengineering 2024, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Donath, L.; Roth, R.; Fricker, L.; Zahner, L. Reliability of gait parameters during treadmill walking in community-dwelling healthy seniors. Gait Posture 2012, 36, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Czech, M.D.; Psaltos, D.; Zhang, H.; Adamusiak, T.; Calicchio, M.; Kelekar, A.; Messere, A.; Van Dijk, K.R.; Ramos, V.; Demanuele, C. Age and environment-related differences in gait in healthy adults using wearables. NPJ Digit. Med. 2020, 3, 127. [Google Scholar] [CrossRef] [PubMed]
- McPhee, J.S.; French, D.P.; Jackson, D.; Nazroo, J.; Pendleton, N.; Degens, H. Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology 2016, 17, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Roeder, L.; Boonstra, T.W.; Kerr, G.K. Corticomuscular control of walking in older people and people with Parkinson’s disease. Sci. Rep. 2020, 10, 2980. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, J.J.; Menz, H.B. Accelerometry: A technique for quantifying movement patterns during walking. Gait Posture 2008, 28, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rössler, R.; Wagner, J.; Knaier, R.; Rommers, N.; Kressig, R.W.; Schmidt-Trucksäss, A.; Hinrichs, T. Spatiotemporal gait characteristics across the adult lifespan: Reference values from a healthy population–Analysis of the COmPLETE cohort study. Gait Posture 2024, 109, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, K.; Mukherjee, M.; Malcolm, P. Can a passive unilateral hip exosuit diminish walking asymmetry? A randomized trial. J. Neuroeng. Rehabil. 2023, 20, 88. [Google Scholar] [CrossRef] [PubMed]
- Rupal, B.S.; Rafique, S.; Singla, A.; Singla, E.; Isaksson, M.; Virk, G.S. Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. Int. J. Adv. Robot. Syst. 2017, 14, 172988141774355. [Google Scholar] [CrossRef]
- Tiboni, M.; Borboni, A.; Vérité, F.; Bregoli, C.; Amici, C. Sensors and actuation technologies in exoskeletons: A review. Sensors 2022, 22, 884. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Du, Z.; Dong, W.; Shen, Y.; Zhao, G. Intrinsic sensing and evolving internal model control of compact elastic module for a lower extremity exoskeleton. Sensors 2018, 18, 909. [Google Scholar] [CrossRef] [PubMed]
- Feodoroff, B.; Blümer, V. Unilateral non-electric assistive walking device helps neurological and orthopedic patients to improve gait patterns. Gait Amp. Posture 2022, 92, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Gao, F.; Huang, X.; Miao, Y. Kinematic accuracy reliability research of a novel exoskeleton with series-parallel topology. Proc. Inst. Mech. Eng. Part C 2014, 228, 1767–1776. [Google Scholar] [CrossRef]
- Attias, M.; Bonnefoy-Mazure, A.; De Coulon, G.; Cheze, L.; Armand, S. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking. Gait Posture 2016, 50, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, Z.; Zhang, K. Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty. Reliab. Eng. Syst. Saf. 2018, 170, 45–52. [Google Scholar] [CrossRef]
- Chatzaki, C.; Skaramagkas, V.; Tachos, N.; Christodoulakis, G.; Maniadi, E.; Kefalopoulou, Z.; Fotiadis, D.I.; Tsiknakis, M. The smart-insole dataset: Gait analysis using wearable sensors with a focus on elderly and Parkinson’s patients. Sensors 2021, 21, 2821. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.B.; Dowling, B.; Troje, N.F.; Fischer, S.L.; Graham, R.B. Classifying elite from novice athletes using simulated wearable sensor data. Front. Bioeng. Biotechnol. 2020, 8, 814. [Google Scholar] [CrossRef] [PubMed]
- Carcreff, L.; Paraschiv-Ionescu, A.; Gerber, C.N.; Newman, C.J.; Armand, S.; Aminian, K. A personalized approach to improve walking detection in real-life settings: Application to children with cerebral palsy. Sensors 2019, 19, 5316. [Google Scholar] [CrossRef] [PubMed]
- Kottner, J.; Gajewski, B.J.; Streiner, D.L. Guidelines for reporting reliability and agreement studies (GRRAS). Int. J. Nurs. Stud. 2011, 48, 659–660. [Google Scholar] [CrossRef]
- Hillel, I.; Gazit, E.; Nieuwboer, A.; Avanzino, L.; Rochester, L.; Cereatti, A.; Rikkert, M.O.; Bloem, B.R.; Mirelman, A.; Hausdorff, J.M. Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur. Rev. Aging Phys. Act. 2019, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Pirscoveanu, C.; Hansen, J.; Pedersen, M.; Madeleine, P. Overground walking with a passive hip exoskeleton during obstacle avoidance in young able-bodied adults. Crit. Rev. Phys. Rehabil. Med. 2022, 34, 1–13. [Google Scholar] [CrossRef]
- Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L. Instrumenting gait with an accelerometer: A system and algorithm examination. Med. Eng. Phys. 2015, 37, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Svenningsen, F.P.; Pavailler, S.; Giandolini, M.; Horvais, N.; Madeleine, P. A narrative review of potential measures of dynamic stability to be used during outdoor locomotion on different surfaces. Sports Biomech. 2020, 19, 120–140. [Google Scholar] [CrossRef] [PubMed]
- Whittle, M.W. Gait Analysis: An Introduction; Butterworth-Heinemann: London, UK, 2014. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Monticone, M.; Ambrosini, E.; Fiorentini, R.; Rocca, B.; Liquori, V.; Pedrocchi, A.; Ferrante, S. Reliability of spatial–temporal gait parameters during dual-task interference in people with multiple sclerosis. A cross-sectional study. Gait Posture 2014, 40, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Price, K.; Bird, S.R.; Lythgo, N.; Raj, I.S.; Wong, J.Y.L.; Lynch, C. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. J. Med. Eng. Technol. 2017, 41, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.W.; Ma, J.; Stafford, R.S. Bar charts enhance Bland–Altman plots when value ranges are limited. J. Clin. Epidemiol. 2010, 63, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Lord, S.; Rochester, L. Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 2013, 37, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.M.; Ludden, G.D. What do older adults and clinicians think about traditional mobility aids and exoskeleton technology? ACM Trans. Hum. Robot. Interact. (THRI) 2019, 8, 1–17. [Google Scholar] [CrossRef]
- Kirk, C.; Küderle, A.; Micó-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Soltani, A.; Gazit, E.; Salis, F.; Alcock, L. Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device. Sci. Rep. 2024, 14, 1754. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; Hickey, A.; Lord, S.; Del Din, S.; Godfrey, A.; Rochester, L. Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: A feasibility, validity and reliability study. J. Neuroeng. Rehabil. 2017, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Dale, R.B. Clinical gait assessment. In Physical Rehabilitation of the Injured Athlete; Elsevier: Philadelphia, PA, USA, 2012; pp. 464–479. [Google Scholar]
Outcomes | Condition | Test Mean (95% CI) | Retest Mean (95% CI) | ICC2,1 (95% CI) | SEM 1 | MDC 2 | t-Test |
---|---|---|---|---|---|---|---|
Cadence (steps/min) | noExo | 104.13 (99.57; 108.69) | 105.72 (101.66; 109.79) | 0.86 (0.65; 0.94) | 0.298 | 0.827 | t(19) = −1.1, p = 0.29 |
Exo | 107.79 (105.00; 110.57) | 107.27 (102.84; 111.69) | 0.81 (0.50; 0.92) | 0.115 | 0.320 | t(19) = 0.36, p = 0.72 | |
Step length (m) | noExo | 0.65 (0.58; 0.72) | 0.64 (0.58; 0.69) | 0.88 (0.71; 0.95) | 0.002 | 0.005 | t(19) = 0.59, p = 0.56 |
Exo | 0.64 (0.59; 0.69) | 0.63 (0.59; 0.68) | 0.82 (0.55; 0.93) | 0.001 | 0.002 | t(19) = 0.20, p = 0.85 | |
Walking speed (m/s) | noExo | 1.13 (0.99; 1.28) | 1.12 (1.01; 1.23) | 0.92 (0.79; 0.97) | 0.001 | 0.004 | t(19) = 0.27, p = 0.79 |
Exo | 1.15 (1.04; 1.26) | 1.14 (1.03; 1.25) | 0.87 (0.66; 0.95) | 0.002 | 0.006 | t(19) = 0.31, p = 0.76 | |
Step time | noExo | 5.25 (3.28; 7.31) | 3.33 (1.82; 4.25) | 0.60 (0.06; 0.84) | 0.383 | 1.062 | t(19) = 2.20, p = 0.04 |
variability (s) | Exo | 4.04 (2.90; 5.36) | 2.95 (2.05; 3.75) | 0.75 (0.35; 0.90) | 0.097 | 0.268 | t(19) = 2.41, p = 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pîrșcoveanu, C.-I.; Oliveira, A.S.; Franch, J.; Madeleine, P. Absolute and Relative Reliability of Spatiotemporal Gait Characteristics Extracted from an Inertial Measurement Unit among Senior Adults Using a Passive Hip Exoskeleton: A Test–Retest Study. Sensors 2024, 24, 5213. https://doi.org/10.3390/s24165213
Pîrșcoveanu C-I, Oliveira AS, Franch J, Madeleine P. Absolute and Relative Reliability of Spatiotemporal Gait Characteristics Extracted from an Inertial Measurement Unit among Senior Adults Using a Passive Hip Exoskeleton: A Test–Retest Study. Sensors. 2024; 24(16):5213. https://doi.org/10.3390/s24165213
Chicago/Turabian StylePîrșcoveanu, Cristina-Ioana, Anderson Souza Oliveira, Jesper Franch, and Pascal Madeleine. 2024. "Absolute and Relative Reliability of Spatiotemporal Gait Characteristics Extracted from an Inertial Measurement Unit among Senior Adults Using a Passive Hip Exoskeleton: A Test–Retest Study" Sensors 24, no. 16: 5213. https://doi.org/10.3390/s24165213
APA StylePîrșcoveanu, C.-I., Oliveira, A. S., Franch, J., & Madeleine, P. (2024). Absolute and Relative Reliability of Spatiotemporal Gait Characteristics Extracted from an Inertial Measurement Unit among Senior Adults Using a Passive Hip Exoskeleton: A Test–Retest Study. Sensors, 24(16), 5213. https://doi.org/10.3390/s24165213