A 64 × 128 3D-Stacked SPAD Image Sensor for Low-Light Imaging
Abstract
:1. Introduction
2. Methods
2.1. Chip Architecture
2.2. Pixel and Readout Circuits
2.3. Digital Logic Control
2.4. Denoise Processing
3. Results and Discussion
3.1. Measurement System
3.2. Pixel Characteristics
3.3. Low-Light Imaging
3.4. Comparison with Previous Chips
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cova, S.; Longoni, A.; Andreoni, A. Towards picosecond resolution with single-photon avalanche diodes. Rev. Sci. Instrum. 1981, 52, 408–412. [Google Scholar] [CrossRef]
- Niclass, C.; Favi, C.; Kluter, T.; Gersbach, M.; Charbon, E. A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97 ps resolution. In Proceedings of the 2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008; pp. 44–46. [Google Scholar]
- Tian, N.; Wang, Z.; Ma, K.; Yang, X.; Qi, N.; Liu, J.; Wu, N.; Dou, R.; Liu, L. A 128 × 128 SPAD LiDAR sensor with column-parallel 25 ps resolution TA-ADCs. J. Semicond. 2024, 45, 082201. [Google Scholar]
- Ogi, J.; Takatsuka, T.; Hizu, K.; Inaoka, Y.; Zhu, H.; Tochigi, Y.; Tashiro, Y.; Sano, F.; Murakawa, Y.; Nakamura, M.; et al. A 124-dB dynamic-range SPAD photon-counting image sensor using subframe sampling and extrapolating photon count. IEEE J. Solid-State Circuits 2021, 56, 3220–3227. [Google Scholar] [CrossRef]
- Ota, Y.; Morimoto, K.; Sasago, T.; Shinohara, M.; Kuroda, Y.; Endo, W.; Maehashi, Y.; Maekawa, S.; Tsuchiya, H.; Abdelghafar, A.; et al. A 0.37 W 143 dB-dynamic-range 1Mpixel backside-illuminated charge-focusing SPAD image sensor with pixel-wise exposure control and adaptive clocked recharging. In Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; pp. 94–96. [Google Scholar]
- Henderson, R.K.; Johnston, N.; Hutchings, S.W.; Gyongy, I.; Al Abbas, T.; Dutton, N.; Tyler, M.; Chan, S.; Leach, J. A 256 × 256 40 nm/90 nm CMOS 3D-stacked 120 dB dynamic-range reconfigurable time-resolved SPAD imager. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 106–108. [Google Scholar]
- Kumagai, O.; Ohmachi, J.; Matsumura, M.; Yagi, S.; Tayu, K.; Amagawa, K.; Matsukawa, T.; Ozawa, O.; Hirono, D.; Shinozuka, Y.; et al. A 189 × 600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; pp. 110–112. [Google Scholar]
- Ximenes, A.R.; Padmanabhan, P.; Lee, M.J.; Yamashita, Y.; Yaung, D.N.; Charbon, E. A 256 × 256 45/65 nm 3D-stacked SPAD-based direct TOF image sensor for LiDAR applications with optical polar modulation for up to 18.6 dB interference suppression. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 96–98. [Google Scholar]
- Zhang, C.; Lindner, S.; Antolović, I.M.; Pavia, J.M.; Wolf, M.; Charbon, E. A 30-frames/s, 252 × 144 SPAD Flash LiDAR with 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming. IEEE J. Solid-State Circuits 2019, 54, 1137–1151. [Google Scholar] [CrossRef]
- Han, S.H.; Park, S.; Chun, J.H.; Choi, J.; Kim, S.J. A 160 × 120 Flash LiDAR Sensor with Fully Analog-Assisted In-Pixel Histogramming TDC Based on Self-Referenced SAR ADC. In Proceedings of the 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 18–22 February 2024; pp. 112–114. [Google Scholar]
- Gyongy, I.; Calder, N.; Davies, A.; Dutton, N.A.; Duncan, R.R.; Rickman, C.; Dalgarno, P.; Henderson, R.K. A 256 × 256, 100-kfps, 61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications. IEEE Trans. Electron Devices 2017, 65, 547–554. [Google Scholar] [CrossRef]
- Ulku, A.C.; Bruschini, C.; Antolović, I.M.; Kuo, Y.; Ankri, R.; Weiss, S.; Michalet, X.; Charbon, E. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 6801212. [Google Scholar] [CrossRef] [PubMed]
- Wayne, M.; Ulku, A.; Ardelean, A.; Mos, P.; Bruschini, C.; Charbon, E. A 500 × 500 dual-gate SPAD imager with 100% temporal aperture and 1 ns minimum gate length for FLIM and phasor imaging applications. IEEE Trans. Electron Devices 2022, 69, 2865–2872. [Google Scholar] [CrossRef]
- Huang, T.Y.; Huang, H.H.; Liu, C.H.; Lin, S.D.; Lee, C.Y. A Stack-Based In-Pixel Storage Circuit for SPAD Photon Counting. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar]
- Katz, A.; Shoham, A.; Vainstein, C.; Birk, Y.; Leitner, T.; Fenigstein, A.; Nemirovsky, Y. Passive CMOS single photon avalanche diode imager for a gun muzzle flash detection system. IEEE Sens. J. 2019, 19, 5851–5858. [Google Scholar] [CrossRef]
- Villa, F.; Severini, F.; Madonini, F.; Zappa, F. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR). Sensors 2021, 21, 3839. [Google Scholar] [CrossRef]
- Piron, F.; Morrison, D.; Yuce, M.R.; Redouté, J.M. A review of single-photon avalanche diode time-of-flight imaging sensor arrays. IEEE Sens. J. 2020, 21, 12654–12666. [Google Scholar] [CrossRef]
- Lu, X.; Law, M.K.; Jiang, Y.; Zhao, X.; Mak, P.I.; Martins, R.P. A 4-μm diameter SPAD using less-doped N-well guard ring in baseline 65-nm CMOS. IEEE Trans. Electron Devices 2020, 67, 2223–2225. [Google Scholar] [CrossRef]
- Morimoto, K.; Ardelean, A.; Wu, M.L.; Ulku, A.C.; Antolovic, I.M.; Bruschini, C.; Charbon, E. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 2020, 7, 346–354. [Google Scholar] [CrossRef]
- Al Abbas, T.; Dutton, N.A.W.; Almer, O.; Pellegrini, S.; Henrion, Y.; Henderson, R.K. Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-stacked CMOS technology. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 196–199. [Google Scholar]
- Charbon, E.; Bruschini, C.; Lee, M.J. 3D-stacked CMOS SPAD image sensors: Technology and applications. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 1–4. [Google Scholar]
- Morimoto, K.; Iwata, J.; Shinohara, M.; Sekine, H.; Abdelghafar, A.; Tsuchiya, H.; Kuroda, Y.; Tojima, K.; Endo, W.; Maehashi, Y.; et al. 3.2 megapixel 3D-stacked charge focusing SPAD for low-light imaging and depth sensing. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 450–453. [Google Scholar]
- Berkovich, A.; Abshire, P. A low-light SPAD vision array. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; pp. 1861–1864. [Google Scholar]
- Ouh, H.; Johnston, M.L. Dual-mode, in-pixel linear and single-photon avalanche diode readout for low-light dynamic range extension in photodetector arrays. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar]
- Issartel, D.; Gao, S.; Pittet, P.; Cellier, R.; Golanski, D.; Cathelin, A.; Calmon, F. Architecture optimization of SPAD integrated in 28 nm FD-SOI CMOS technology to reduce the DCR. Solid-State Electron. 2022, 191, 108297. [Google Scholar] [CrossRef]
- Bronzi, D.; Villa, F.; Bellisai, S.; Tisa, S.; Tosi, A.; Ripamonti, G.; Zappa, F.; Weyers, S.; Durini, D.; Brockherde, W.; et al. Large-area CMOS SPADs with very low dark counting rate. In Proceedings of the Quantum Sensing and Nanophotonic Devices X, San Francisco, CA, USA, 2–7 February 2013; Volume 8631, pp. 241–248. [Google Scholar]
- Ito, K.; Otake, Y.; Kitano, Y.; Matsumoto, A.; Yamamoto, J.; Ogasahara, T.; Hiyama, H.; Naito, R.; Takeuchi, K.; Tada, T.; et al. A Back Illuminated 10 μm SPAD Pixel Array Comprising Full Trench Isolation and Cu-Cu Bonding with over 14% PDE at 940 nm. In Proceedings of the 2020 IEEE Electron Device Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 347–350. [Google Scholar]
- Takatsuka, T.; Ogi, J.; Ikeda, Y.; Hizu, K.; Inaoka, Y.; Sakama, S.; Watanabe, I.; Ishikawa, T.; Shimada, S.; Suzuki, J.; et al. A 3.36-μm-Pitch SPAD Photon-Counting Image Sensor Using a Clustered Multi-Cycle Clocked Recharging Technique with an Intermediate Most-Significant-Bit Readout. IEEE J. Solid-State Circuits 2024, 59, 1137–1145. [Google Scholar] [CrossRef]
- Oike, Y. Evolution of image sensor architectures with stacked device technologies. IEEE Trans. Electron Devices 2021, 69, 2757–2765. [Google Scholar] [CrossRef]
- Shimada, S.; Otake, Y.; Yoshida, S.; Endo, S.; Nakamura, R.; Tsugawa, H.; Ogita, T.; Ogasahara, T.; Yokochi, K.; Inoue, Y.; et al. A Back Illuminated 6 μm SPAD Pixel Array with High PDE and Timing Jitter Performance. In Proceedings of the 2021 IEEE International Electron Device Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 446–449. [Google Scholar]
- Wang, Z.; Tian, N.; Yang, X.; Feng, P.; Dou, R.; Yu, S.; Liu, J.; Wu, N.; Liu, L. Overview of imaging technology based on single photon avalanche diode. Integr. Circuits Embed. Syst. 2024, 24, 10–25. [Google Scholar]
- Lim, S.; Cheon, J.; Chae, Y.; Jung, W.; Lee, D.H.; Kwon, M.; Yoo, K.; Ham, S.; Han, G. A 240-frames/s 2.1-Mpixel CMOS image sensor with column-shared cyclic ADCs. IEEE J. Solid-State Circuits 2011, 46, 2073–2083. [Google Scholar] [CrossRef]
- Park, J.E.; Lim, D.H.; Jeong, D.K. A reconfigurable 40-to-67 dB SNR, 50-to-6400 Hz frame-rate, column-parallel readout IC for capacitive touch-screen panels. IEEE J. Solid-State Circuits 2014, 49, 2305–2318. [Google Scholar] [CrossRef]
- Liu, M.; Cai, Z.; Wang, Z.; Zhou, S.; Law, M.K.; Liu, J.; Ma, J.; Wu, N.; Liu, L. A 3 THz CMOS Image Sensor. IEEE J. Solid-State Circuits 2024, 1–14. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Qi, N.; Liu, L.; Wu, N. A 16 × 1 Pixels 180 nm CMOS SPAD-based TOF Image Sensor for LiDAR Applications. Acta Photonica Sin. 2019, 48, 0704001. [Google Scholar]
- Palubiak, D.P.; Li, Z.; Deen, M.J. After pulsing characteristics of free-running and time-gated single-photon avalanche diodes in 130-nm CMOS. IEEE Trans. Electron Devices 2015, 62, 3727–3733. [Google Scholar] [CrossRef]
- Yang, X.; Yao, C.; Kang, L.; Luo, Q.; Qi, N.; Dou, R.; Yu, S.; Feng, P.; Wei, Z.; Liu, J.; et al. A Bio-Inspired Spiking Vision Chip Based on SPAD Imaging and Direct Spike Computing for Versatile Edge Vision. IEEE J. Solid-State Circuits 2023, 59, 1883–1898. [Google Scholar] [CrossRef]
- Intermite, G.; Warburton, R.E.; McCarthy, A.; Ren, X.; Villa, F.; Waddie, A.J.; Taghizadeh, M.R.; Zou, Y.; Zappa, F.; Tosi, A.; et al. Enhancing the fill-factor of CMOS SPAD arrays using microlens integration. In Proceedings of the Photon Counting Applications, Prague, Czech Republic, 13–15 April 2015; Volume 9504, pp. 64–75. [Google Scholar]
- Antolovic, I.M.; Ulku, A.C.; Kizilkan, E.; Lindner, S.; Zanella, F.; Ferrini, R.; Schnieper, M.; Charbon, E.; Bruschini, C. Optical-stack optimization for improved SPAD photon detection efficiency. In Proceedings of the Quantum Sensing and Nano Electronics and Photonics XVI, San Francisco, CA, USA, 2–7 February 2019; Volume 10926, pp. 359–365. [Google Scholar]
- Connolly, P.W.; Ren, X.; McCarthy, A.; Mai, H.; Villa, F.; Waddie, A.J.; Taghizadeh, M.R.; Tosi, A.; Zappa, F.; Henderson, R.K.; et al. High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement. Appl. Opt. 2020, 59, 4488–4498. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Chen, Q.; Bian, D.; Xu, Y. A Near-Infrared Single-Photon Detector for Direct Time-of-Flight Measurement Using Time-to-Amplitude-Digital Hybrid Conversion Method. IEEE Trans. Instrum. Meas. 2023, 73, 4500309. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, D.; Elgendy, O.A.; Masoodian, S. A 0.19 e-rms read noise 16.7 Mpixel stacked quanta image sensor with 1.1 μm-pitch backside illuminated pixels. IEEE Electron Device Lett. 2021, 42, 891–894. [Google Scholar] [CrossRef]
- Zhang, C.; Lindner, S.; Antolovic, I.M.; Wolf, M.; Charbon, E. A CMOS SPAD imager with collision detection and 128 dynamically reallocating TDCs for single-photon counting and 3D time-of-flight imaging. Sensors 2018, 18, 4016. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.H.; Huang, T.Y.; Liu, C.H.; Lin, S.D.; Lee, C.Y. 32 × 64 SPAD Imager Using 2-bit In-Pixel Stack-Based Memory for Low-Light Imaging. IEEE Sens. J. 2023, 23, 19272–19281. [Google Scholar] [CrossRef]
- Hu, J.; Liu, B.; Ma, R.; Liu, M.; Zhu, Z. A 32 × 32-pixel flash LiDAR sensor with noise filtering for high-background noise applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 645–656. [Google Scholar] [CrossRef]
Unit | This Work | [44] | [45] | [43] | |
---|---|---|---|---|---|
Technology | - | 180 nm/130 nm Stacked BSI | 180 nm HV FSI | 180 nm HV FSI | 180 nm CIS FSI |
Array Size | - | 64 × 128 | 32 × 64 | 32 × 32 | 32 × 32 |
Pixel Size | μm | 21 × 21 | 48 × 61 | 60 × 60 | 28.5 × 28.5 |
Microlens | - | Yes | / | / | / |
Fill Factor * | % | 38 | 13.4 | 7.2 | 28 |
Peak PDP | % | 25.4 | 57 | 31 | 47.8 |
Median DCR | cps | 41.5 | 810 | 1200 | 113 |
Low-Light Imaging | lux | 10−4 | 10−1 ** | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yang, X.; Tian, N.; Liu, M.; Cai, Z.; Feng, P.; Dou, R.; Yu, S.; Wu, N.; Liu, J.; et al. A 64 × 128 3D-Stacked SPAD Image Sensor for Low-Light Imaging. Sensors 2024, 24, 4358. https://doi.org/10.3390/s24134358
Wang Z, Yang X, Tian N, Liu M, Cai Z, Feng P, Dou R, Yu S, Wu N, Liu J, et al. A 64 × 128 3D-Stacked SPAD Image Sensor for Low-Light Imaging. Sensors. 2024; 24(13):4358. https://doi.org/10.3390/s24134358
Chicago/Turabian StyleWang, Zhe, Xu Yang, Na Tian, Min Liu, Ziteng Cai, Peng Feng, Runjiang Dou, Shuangming Yu, Nanjian Wu, Jian Liu, and et al. 2024. "A 64 × 128 3D-Stacked SPAD Image Sensor for Low-Light Imaging" Sensors 24, no. 13: 4358. https://doi.org/10.3390/s24134358