A Retrospective Analysis of Indoor CO2 Measurements Obtained with a Mobile Robot during the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. New Contribution
1.2. Structure of the Paper
2. Background
2.1. CO2 Sensors
2.2. CO2 Measurement with Mobile Platforms
3. Materials and Methods
3.1. Mobile Robot
3.2. CO2 Sensor Embedded in the Mobile Robot
3.3. Method for 2D Map Creation
3.4. Method for Path-Planning
3.5. Methods for Self-Localization and Path-Tracking
3.6. Method for Robot-to-Building Integration
4. Results
4.1. Exploratory Missions
4.2. CO2 Measurement Results
4.3. Evaluation of the Risk of COVID-19 Infection
5. Retrospective Analysis
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Environmental Protection Agency. Indoor Air Quality. Available online: https://www.epa.gov/indoor-air-quality-iaq (accessed on 23 April 2024).
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Majd, E.; McCormack, M.; Davis, M.; Curriero, F.; Berman, J.; Connolly, F.; Leaf, P.; Rule, A.; Green, T.; Clemons-Erby, D.; et al. Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environ. Res. 2019, 170, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, F.; Lamberti, G.; Leccese, F.; Salvadori, G. Monitoring CO2 concentration to control the infection probability due to airborne transmission in naturally ventilated university classrooms. Archit. Sci. Rev. 2022, 65, 306–318. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Hulin, M.; Lavaud, F.; Raherison, C.; Kopferschmitt, C.; De Blay, F.; Charpin, D.A.; Denis, C. Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax 2012, 67, 682–688. [Google Scholar] [CrossRef]
- Fisk, W.J. The ventilation problem in schools: Literature review. Indoor Air 2017, 27, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Baloch, R.M.; Maesano, C.N.; Christoffersen, J.; Banerjee, S.; Gabriel, M.; Csobod, É.; de Oliveira Fernandes, E.; Annesi-Maesano, I.; Szuppinger, P.; Prokai, R.; et al. Indoor air pollution, physical and comfort parameters related to schoolchildren’s health: Data from the European SINPHONIE study. Sci. Total Environ. 2020, 739, 139870. [Google Scholar] [CrossRef] [PubMed]
- Ding, E.; Zhang, D.; Bluyssen, P.M. Ventilation Regimes of School Classrooms Against Airborne Transmission of Infectious Respiratory Droplets: A Review. Build. Environ. 2022, 207, 108484. [Google Scholar] [CrossRef]
- Majumdar, D.; Chatterjee, S. Modelling Accumulation of Respiratory-CO2 in Closed Rooms Leading to Decision-Making on Room Occupancy. MAPAN 2020, 35, 323–332. [Google Scholar] [CrossRef]
- Al-Awadi, L. Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait. J. Air Waste Manag. Assoc. 2018, 68, 54–72. [Google Scholar] [CrossRef]
- Di Gilio, A.; Palmisani, J.; Pulimeno, M.; Cerino, F.; Cacace, M.; Miani, A.; de Gennaro, G. CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environ. Res. 2021, 202, 111560. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Smith, L.M.; Li, X.; Yancey, O.; Franzblau, A.; Dvonch, J.T.; Xi, C.; Neitzel, R.L. Monitoring SARS-CoV-2 in air and on surfaces and estimating infection risk in buildings and buses on a university campus. J. Expo Sci. Environ. Epidemiol. 2022, 32, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Lo, L.J.; Waring, M.S. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 2020, 10, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.H.L. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol. 2021, 19, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, eabd9149. [Google Scholar] [CrossRef] [PubMed]
- Bahl, P.; de Silva, C.; MacIntyre, C.R.; Bhattacharjee, S.; Chughtai, A.A.; Doolan, C. Flow dynamics of droplets expelled during sneezing. Phys. Fluids 2021, 33, 111901. [Google Scholar] [CrossRef]
- World Health Organization. When and How to Use the Masks. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks (accessed on 23 April 2024).
- Turner, J.S.; O’Halloran, J.A.; Kalaidina, E.; Kim, W.; Schmitz, A.J.; Zhou, J.Q.; Lei, T.; Thapa, M.; Chen, R.E.; Case, J.B.; et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021, 596, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, B.; Lotan, R.; Kalkstein, N.; Peretz, A.; Perez, G.; Ben-Tov, A.; Chodick, G.; Gazit, S.; Patalon, T. Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat. Commun. 2021, 12, 6379. [Google Scholar] [CrossRef] [PubMed]
- Zivelonghi, A.; Lai, M. Mitigating aerosol infection risk in school buildings: The role of natural ventilation, volume, occupancy and CO2 monitoring. Build. Environ. 2021, 204, 108139. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, P.H.; Chen, J.K.; Su, T.C. Recommendations for ventilation of indoor spaces to reduce COVID-19 transmission. J. Formos. Med. Assoc. 2021, 120, 2055–2060. [Google Scholar] [CrossRef]
- Alonso, S.; Català, M.; López, D.; Álvarez-Lacalle, E.; Jordan, I.; García-García, J.J.; Fumadó, V.; Muñoz-Almagro, C.; Gratacós, E.; Balanza, N.; et al. Individual prevention and containment measures in schools in Catalonia, Spain, and community transmission of SARS-CoV-2 after school re-opening. PLoS ONE 2022, 17, e0263741. [Google Scholar] [CrossRef]
- Ferrari, S.; Blazquez, T.; Cardelli, R.; Puglisi, G.; Suarez, R.; Mazzarella, L. Ventilation strategies to reduce airborne transmission of viruses in classrooms: A systematic review of scientific literature. Build. Environ. 2022, 222, 109366. [Google Scholar] [CrossRef]
- Fisk, W.J.; Rosenfeld, A.H. Estimates of improved productivity and health from better indoor environments. Indoor Air 1997, 7, 158–172. [Google Scholar] [CrossRef]
- Milton, D.K.; Glencross, P.M.; Walters, M.D. Risk of sick leave associated with outdoor air supply rate, humidification, and occupant complaints. Indoor Air 2000, 10, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, S.N.; Milton, D.K. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 2003, 13, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Jimenez, J.L. Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environ. Sci. Technol. Lett. 2021, 8, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Bluyssen, P.M. Exploring the possibility of using CO2 as a proxy for exhaled particles to predict the risk of indoor exposure to pathogens. Indoor Built Environ. 2022, 32, 1958–1972. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Vouriot, C.V.M.; Burridge, H.C.; Noakes, C.J.; Linden, P.F. Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide. Indoor Air 2021, 31, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Rayegan, S.; Shu, C.; Berquist, J.; Jeon, J.; Zhou, L.G.; Wang, L.L.; Mbareche, H.; Tardif, P.; Ge, H. A review on indoor airborne transmission of COVID-19—Modelling and mitigation approaches. J. Build. Eng. 2023, 64, 105599. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S.; Srinivasan, K.; Lash, M.T. Impact of the COVID-19 pandemic on the stock market and investor online word of mouth. Decis. Support Syst. 2024, 176, 114074. [Google Scholar] [CrossRef]
- Armani, A.M.; Hurt, D.E.; Hwang, D.; McCarthy, M.C.; Scholtz, A. Low-tech solutions for the COVID-19 supply chain crisis. Nat. Rev. Mater 2020, 5, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.V.; Wang, L. A literature survey of the robotic technologies during the COVID-19 pandemic. J. Manuf. Syst. 2021, 60, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Leo-Ramírez, A.; Tabuenca, B.; García-Alcántara, V.; Tovar, E.; Greller, W.; Gilarranz-Casado, C. Solutions to ventilate learning spaces: A review of current CO2 sensors for IoT systems. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 1544–1551. [Google Scholar] [CrossRef]
- Benammar, M.; Abdaoui, A.; Ahmad, S.H.M.; Touati, F.; Kadri, A. A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring. Sensors 2018, 18, 581. [Google Scholar] [CrossRef]
- Jo, J.; Jo, B.; Kim, J.; Kim, S.; Han, W. Development of an IoT-Based Indoor Air Quality Monitoring Platform. J. Sens. 2020, 2020, 8749764. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Sensors for indoor air quality monitoring and assessment through Internet of Things: A systematic review. Environ. Monit. Assess 2021, 193, 66. [Google Scholar] [CrossRef]
- Marques, G.; Ferreira, C.R.; Pitarma, R. Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things. J. Med. Syst. 2019, 43, 67. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.F.; Ramos, N.M.M. Low-cost Arduino-based temperature, relative humidity and CO2 sensors—An assessment of their suitability for indoor built environments. J. Build. Eng. 2022, 60, 105151. [Google Scholar] [CrossRef]
- Pastor-Fernández, A.; Cerezo-Narváez, A.; Montero-Gutiérrez, P.; Ballesteros-Pérez, P.; Otero-Mateo, M. Use of Low-Cost Devices for the Control and Monitoring of CO2 Concentration in Existing Buildings after the COVID Era. Appl. Sci. 2022, 12, 3927. [Google Scholar] [CrossRef]
- Vanhaeverbeke, J.; Deprost, E.; Bonte, P.; Strobbe, M.; Nelis, J.; Volckaert, B.; Ongenae, F.; Verstockt, S.; Van Hoecke, S. Real-Time Estimation and Monitoring of COVID-19 Aerosol Transmission Risk in Office Buildings. Sensors 2023, 23, 2459. [Google Scholar] [CrossRef] [PubMed]
- Borodinecs, A.; Palcikovskis, A.; Jacnevs, V. Indoor Air CO2 Sensors and Possible Uncertainties of Measurements: A Review and an Example of Practical Measurements. Energies 2022, 15, 6961. [Google Scholar] [CrossRef]
- Jin, M.; Liu, S.; Schiavon, S.; Spanos, C. Automated mobile sensing: Towards high-granularity agile indoor environmental quality monitoring. Build. Environ. 2018, 127, 268–276. [Google Scholar] [CrossRef]
- Quintana, B.; Vikhorev, K.; Adán, A. Workplace occupant comfort monitoring with a multi-sensory and portable autonomous robot. Build. Environ. 2021, 205, 108194. [Google Scholar] [CrossRef]
- Rahmaniar, W.; Wicaksono, A. Design and Implementation of a Mobile Robot for Carbon Monoxide Monitoring. J. Robot. Control 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Wang, W.; Cao, Y. Incorporating SLAM and mobile sensing for indoor CO2 monitoring and source position estimation. J. Clean. Prod. 2021, 291, 125780. [Google Scholar] [CrossRef]
- Curea, A.M.; Antonescu, A.M. Semi-Autonomous Robot for Exploration, Mapping and Air Quality Monitoring. In Proceedings of the 2023 International Semiconductor Conference (CAS), Sinaia, Romania, 11–13 October 2023; pp. 237–240. [Google Scholar] [CrossRef]
- Murphy, R.R.; Gandudi, V.B.; Amin, T.; Clendenin, A.; Moats, J. An analysis of international use of robots for COVID-19. Robot. Auton. Syst. 2022, 148, 103922. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Clotet, E. The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes. Designs 2022, 6, 66. [Google Scholar] [CrossRef]
- Palacín, J.; Clotet, E.; Martínez, D.; Martínez, D.; Moreno, J. Extending the Application of an Assistant Personal Robot as a Walk-Helper Tool. Robotics 2019, 8, 27. [Google Scholar] [CrossRef]
- Rubies, E.; Palacín, J.; Clotet, E. Enhancing the Sense of Attention from an Assistance Mobile Robot by Improving Eye-Gaze Contact from Its Iconic Face Displayed on a Flat Screen. Sensors 2022, 22, 4282. [Google Scholar] [CrossRef] [PubMed]
- Lluvia, I.; Lazkano, E.; Ansuategi, A. Active Mapping an Robot Exploration: A Survey. Sensors 2021, 21, 2445. [Google Scholar] [CrossRef]
- Clotet, E.; Palacín, J. SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring following ICP Localization. Sensors 2023, 23, 6841. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, G.; Song, Y.; Wang, Y. An obstacle avoidance strategy for complex obstacles based on artificial potential field method. J. Field Robot. 2023, 40, 1231–1244. [Google Scholar] [CrossRef]
- Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-Robot Simultaneous Localization and Mapping: A Review. J. Field Robot. 2016, 33, 3–46. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Bolkas, D.; Martinez, A. Effect of target color and scanning geometry on terrestrial LiDAR point-cloud noise and plane fitting. J. Appl. Geod. 2018, 12, 109–127. [Google Scholar] [CrossRef]
- Ryu, H.; Chung, W.K. Local map-based exploration using a breadth-first search algorithm for mobile robots. Int. J. Precis. Eng. Manuf. 2015, 16, 2073–2080. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Bitriá, R.; Clotet, E. Path Planning of a Mobile Delivery Robot Operating in a Multi-Story Building Based on a Predefined Navigation Tree. Sensors 2023, 23, 8795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Y.; Lin, W.-M.; Chen, A.-X. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [Google Scholar] [CrossRef]
- Guruji, A.K.; Agarwal, H.; Parsediya, D.K. Time-efficient A* Algorithm for Robot Path Planning. Procedia Technol. 2016, 23, 144–149. [Google Scholar] [CrossRef]
- Palacín, J.; Bitriá, R.; Rubies, E.; Clotet, E. A Procedure for Taking a Remotely Controlled Elevator with an Autonomous Mobile Robot Based on 2D LIDAR. Sensors 2023, 23, 6089. [Google Scholar] [CrossRef]
- Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.-C. Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges. Sensors 2018, 18, 3170. [Google Scholar] [CrossRef]
- Hoy, M.; Matveev, A.S.; Savkin, A.V. Algorithms for collision-free navigation of mobile robots in complex cluttered environments: A survey. Robotica 2015, 33, 463–497. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Clotet, E.; Martínez, D. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant. Sensors 2021, 21, 7216. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, C.; Chen, K. Smart Building Applications and Information System Hardware Co-Design. In Big Data Analytics for Sensor-Network Collected Intelligence; Elsevier: Amsterdam, The Netherlands, 2017; pp. 225–240. [Google Scholar] [CrossRef]
- Cirrincione, L.; Plescia, F.; Ledda, C.; Rapisarda, V.; Martorana, D.; Moldovan, R.E.; Theodoridou, K.; Cannizzaro, E. COVID-19 Pandemic: Prevention and Protection Measures to Be Adopted at the Workplace. Sustainability 2020, 12, 3603. [Google Scholar] [CrossRef]
- Bazant, M.; Kodio, O.; Cohen, A.; Khan, K.; Gu, Z.; Bush, J. Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19. Flow 2021, 1, E10. [Google Scholar] [CrossRef]
- Bazant, M.; Bush, J.W.M. A guideline to limit indoor airborne transmission of COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2018995118. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Rojas, A.P.; Kropff, E.; Bahnfleth, W.; Buonanno, G.; Dancer, S.J.; Kurnitski, J.; Li, Y.; Loomans, M.G.; Marr, L.C.; et al. Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Environ. Sci. Technol. 2022, 56, 1125–1137. [Google Scholar] [CrossRef]
- Todos los Datos de la Evolución Diaria de la COVID-19 en España. Datadista. Available online: https://www.datadista.com/coronavirus/datos-evolucion-diaria-pandemia-covid19-en-espana/ (accessed on 23 April 2024).
- Evolución de la Vacunación Contra la COVID-19 en España. Datadista. Available online: https://www.datadista.com/coronavirus/evolucion-de-la-vacunacion-en-espana/ (accessed on 23 April 2024).
- COVID-19 Vaccination in Catalonia. Institut d’Estadística de Catalunya (Idescat). Available online: https://www.idescat.cat/indicadors/ (accessed on 23 April 2024).
- Khosronejad, A.; Santoni, C.; Flora, K.; Zhang, Z.; Kang, S.; Payabvash, S.; Sotiropoulos, F. Fluid dynamics simulations show that facial masks can suppress the spread of COVID-19 in indoor environments. AIP Adv. 2019, 10, 125109. [Google Scholar] [CrossRef]
- Cowger, T.L.; Murray, E.J.; Clarke, J.; Bassett, M.T.; Ojikutu, B.O.; Sánchez, S.M.; Linos, N.; Hall, K.T. Lifting Universal Masking in Schools—COVID-19 Incidence among Students and Staff. N. Engl. J. Med. 2022, 387, 1935–1946. [Google Scholar] [CrossRef]
- World Health Organization. Imagining the Future of Pandemics and Epidemics: A 2022 Perspective. Available online: https://www.who.int/publications/i/item/9789240052093 (accessed on 23 April 2024).
- Asim, N.; Badiei, M.; Mohammad, M.; Razali, H.; Rajabi, A.; Chin Haw, L.; Jameelah Ghazali, M. Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview. Int. J. Environ. Res. Public Health 2022, 19, 1016. [Google Scholar] [CrossRef]
- Palacín, J.; Clotet, E.; Rubies, E. Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors Applied to Classify Two Volatiles. Chemosensors 2022, 10, 118. [Google Scholar] [CrossRef]
- Wilson, A.D.; Forse, L.B. Potential for Early Noninvasive COVID-19 Detection Using Electronic-Nose Technologies and Disease-Specific VOC Metabolic Biomarkers. Sensors 2023, 23, 2887. [Google Scholar] [CrossRef] [PubMed]
Mission | Scheduled | Description | Rooms to Explore |
---|---|---|---|
M0 | 08:00 h | Robot test and obtain reference background CO2 levels | C0.03; C0.04; C0.05 |
M1 | 09:20 h | Normal classroom exploration | C0.01; C0.03 |
M2 | 09:50 h | Normal classroom exploration | C0.01; C0.03 |
M3 | 11:18 h | Normal classroom exploration | C0.02; C0.03 |
M4 | 12:00 h | Normal classroom exploration | C0.02; C0.03 |
Low Risk | Moderate Risk | High Risk | Very High Risk | |
---|---|---|---|---|
CO2 concentration | <700 ppm | >700 ppm | >800 ppm | >1000 ppm |
<800 ppm | <1000 ppm |
Mission: Classroom | Exploration Time | Occupancy (People) | Occupancy Time | Maximum CO2 Level Registered | Risk Inhaling the Air Exhaled by Other Occupants [11] |
---|---|---|---|---|---|
M0: C0.03 | 08:02 h | 0 | 0 h | 448 ppm (Figure 5) | - |
M0: C0.04 | 08:08 h | 0 | 0 h | 453 ppm (Figure 5) | - |
M0: C0.05 | 08:14 h | 0 | 0 h | 468 ppm (Figure 5) | - |
M1: C0.01 | 09:22 h | 18 | 00:22 h | 526 ppm (Figure 6a) | Low Risk |
M2: C0.01 | 09:50 h | 18 | 00:50 h | 650 ppm (Figure 6b) | Low Risk |
M3: C0.02 | 11:18 h | 21 | 02:18 h | 670 ppm (Figure 6c) | Low Risk |
M4: C0.02 | 12:02 h | 21 | 03:02 h | 689 ppm (Figure 6d) | Low Risk |
M1: C0.03 | 09:28 h | 0 | 0 h | 445 ppm (Figure 6a) | - |
M2: C0.03 | 09:56 h | 0 | 0 h | 455 ppm (Figure 6b) | - |
M3: C0.03 | 11:24 h | 0 | 0 h | 473 ppm (Figure 6c) | - |
M4: C0.03 | 12:08 h | 0 | 0 h | 466 ppm (Figure 6d) | - |
CO2 Measurements | Bazant et al. [70] Model | Risk of SARS-CoV-2 Aerosol Transmission [42] | |||||
---|---|---|---|---|---|---|---|
Inputs | Output | ||||||
Mission: Classroom | CO2 Excess Registered | Type of Activity | Use of Face Masks | People Infected | People Immune | Safe CO2 Excess | |
M1: C0.01 | 58 ppm | Quiet | 100% A | 1 B | 10% B | >1600 ppm | 0% |
M2: C0.01 | 128 ppm | Quiet | 100% A | 1 B | 10% B | >1600 ppm | 0% |
M3: C0.02 | 202 ppm | Quiet | 100% A | 1 B | 10% B | 1325 ppm | 15% |
M4: C0.02 | 221 ppm | Quiet | 100% A | 1 B | 10% B | 891 ppm | 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacín, J.; Rubies, E.; Clotet, E. A Retrospective Analysis of Indoor CO2 Measurements Obtained with a Mobile Robot during the COVID-19 Pandemic. Sensors 2024, 24, 3102. https://doi.org/10.3390/s24103102
Palacín J, Rubies E, Clotet E. A Retrospective Analysis of Indoor CO2 Measurements Obtained with a Mobile Robot during the COVID-19 Pandemic. Sensors. 2024; 24(10):3102. https://doi.org/10.3390/s24103102
Chicago/Turabian StylePalacín, Jordi, Elena Rubies, and Eduard Clotet. 2024. "A Retrospective Analysis of Indoor CO2 Measurements Obtained with a Mobile Robot during the COVID-19 Pandemic" Sensors 24, no. 10: 3102. https://doi.org/10.3390/s24103102