Incorporating Wearable Technology for Enhanced Rehabilitation Monitoring after Hip and Knee Replacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Recording Device and Outcomes
2.3. Procedure
2.4. Data Processing
Variable | Definition |
---|---|
Steps | Total steps accumulated in a day |
P1M, cadence | Steps/minute recorded for the highest minute in a day |
P6MC, cadence | Steps/6 min recorded for 6 consecutive minutes in a day |
Light intensity, minute per week | Total number of minutes at <100 steps/minute |
Moderate intensity, minute per week | Total number of minutes at >100 and <130 steps/minute |
Vigorous intensity, minute per week | Total number of minutes at >130 steps/minute |
2.4.1. Peak 1-Minute Cadence (P1M)
2.4.2. Peak 6-Minute Consecutive Cadence (P6MC)
2.4.3. Intensity
2.4.4. Outlier Removal
2.5. Statistical Analysis
3. Results
3.1. Preoperative Scores
3.2. Variability of the Outcomes
3.3. Evolution of the Parameters during the Rehabilitation Process
3.3.1. According to Recovery
3.3.2. According to the Type of Surgery
4. Discussion
4.1. Main Results
4.2. Strengths and Limitations
4.3. Future Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.J.; Eyles, J.P.; Hunter, D.J. Hip Osteoarthritis: Etiopathogenesis and Implications for Management. Adv. Ther. 2016, 33, 1921–1946. [Google Scholar] [CrossRef] [PubMed]
- Vina, E.R.; Kwoh, C.K. Epidemiology of Osteoarthritis: Literature Update. Curr. Opin. Rheumatol. 2018, 30, 160–167. [Google Scholar] [CrossRef]
- Kontio, T.; Heliövaara, M.; Viikari-Juntura, E.; Solovieva, S. To What Extent Is Severe Osteoarthritis Preventable? Occupational and Non-Occupational Risk Factors for Knee and Hip Osteoarthritis. Rheumatology 2020, 59, 3869–3877. [Google Scholar] [CrossRef]
- van Doormaal, M.C.M.; Meerhoff, G.A.; Vliet Vlieland, T.P.M.; Peter, W.F. A Clinical Practice Guideline for Physical Therapy in Patients with Hip or Knee Osteoarthritis. Musculoskelet. Care 2020, 18, 575–595. [Google Scholar] [CrossRef]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. 2020, 72, 149–162. [Google Scholar] [CrossRef]
- Goh, S.-L.; Persson, M.S.M.; Stocks, J.; Hou, Y.; Lin, J.; Hall, M.C.; Doherty, M.; Zhang, W. Efficacy and Potential Determinants of Exercise Therapy in Knee and Hip Osteoarthritis: A Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2019, 62, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.T. What Is Rehabilitation? An Empirical Investigation Leading to an Evidence-Based Description. Clin. Rehabil. 2020, 34, 571–583. [Google Scholar] [CrossRef]
- Bonnechère, B.; Sholukha, V.; Omelina, L.; Van Vooren, M.; Jansen, B.; Van Sint Jan, S. Suitability of Functional Evaluation Embedded in Serious Game Rehabilitation Exercises to Assess Motor Development across Lifespan. Gait Posture 2017, 57, 35–39. [Google Scholar] [CrossRef]
- Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.W.; Keller, A.; et al. Long-Term Unsupervised Mobility Assessment in Movement Disorders. Lancet Neurol. 2020, 19, 462–470. [Google Scholar] [CrossRef]
- Chen, H.-M.; Chen, C.C.; Hsueh, I.-P.; Huang, S.-L.; Hsieh, C.-L. Test-Retest Reproducibility and Smallest Real Difference of 5 Hand Function Tests in Patients with Stroke. Neurorehabil Neural Repair. 2009, 23, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Adans-Dester, C.; Hankov, N.; O’Brien, A.; Vergara-Diaz, G.; Black-Schaffer, R.; Zafonte, R.; Dy, J.; Lee, S.I.; Bonato, P. Enabling Precision Rehabilitation Interventions Using Wearable Sensors and Machine Learning to Track Motor Recovery. NPJ Digit. Med. 2020, 3, 121. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.J.; Stein, J. Stepping Closer to Precision Rehabilitation. JAMA Neurol. 2023, 80, 339–341. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Berkemeyer, K.; Wijndaele, K.; White, T.; Cooper, A.J.M.; Luben, R.; Westgate, K.; Griffin, S.J.; Khaw, K.T.; Wareham, N.J.; Brage, S. The Descriptive Epidemiology of Accelerometer-Measured Physical Activity in Older Adults. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 2. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Papapetropoulos, S.; Xiong, M.; Kieburtz, K. The First Frontier: Digital Biomarkers for Neurodegenerative Disorders. Digit. Biomark. 2017, 1, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.L.; Dinesh, K.; Xiong, M.; Tarolli, C.G.; Sharma, S.; Sheth, N.; Aranyosi, A.J.; Zhu, W.; Goldenthal, S.; Biglan, K.M.; et al. Multiple Wearable Sensors in Parkinson and Huntington Disease Individuals: A Pilot Study in Clinic and at Home. Digital Biomark. 2017, 1, 52–63. [Google Scholar] [CrossRef]
- Olsen, S.; Rashid, U.; Barbado, D.; Suresh, P.; Alder, G.; Khan Niazi, I.; Taylor, D. The Validity of Smartphone-Based Spatiotemporal Gait Measurements during Walking with and without Head Turns: Comparison with the GAITRite® System. J. Biomech. 2024, 162, 111899. [Google Scholar] [CrossRef]
- Crizer, M.P.; Kazarian, G.S.; Fleischman, A.N.; Lonner, J.H.; Maltenfort, M.G.; Chen, A.F. Stepping Toward Objective Outcomes: A Prospective Analysis of Step Count After Total Joint Arthroplasty. J. Arthroplast. 2017, 32, S162–S165. [Google Scholar] [CrossRef]
- Redfern, R.E.; Crawford, D.A.; Lombardi, A.V.; Tripuraneni, K.R.; Van Andel, D.C.; Anderson, M.B.; Cholewa, J.M. Outcomes Vary by Pre-Operative Physical Activity Levels in Total Knee Arthroplasty Patients. J. Clin. Med. 2023, 13, 125. [Google Scholar] [CrossRef]
- Lyman, S.; Hidaka, C.; Fields, K.; Islam, W.; Mayman, D. Monitoring Patient Recovery After THA or TKA Using Mobile Technology. HSS J. 2020, 16, 358–365. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, W.; McDonough, D.J.; Zeng, N.; Lee, J.E. The Dilemma of Analyzing Physical Activity and Sedentary Behavior with Wrist Accelerometer Data: Challenges and Opportunities. JCM 2021, 10, 5951. [Google Scholar] [CrossRef]
- Shema-Shiratzky, S.; Beer, Y.; Mor, A.; Elbaz, A. Smartphone-Based Inertial Sensors Technology—Validation of a New Application to Measure Spatiotemporal Gait Metrics. Gait Posture 2022, 93, 102–106. [Google Scholar] [CrossRef]
- Shandhi, M.M.H.; Cho, P.J.; Roghanizad, A.R.; Singh, K.; Wang, W.; Enache, O.M.; Stern, A.; Sbahi, R.; Tatar, B.; Fiscus, S.; et al. A Method for Intelligent Allocation of Diagnostic Testing by Leveraging Data from Commercial Wearable Devices: A Case Study on COVID-19. NPJ Digit. Med. 2022, 5, 130. [Google Scholar] [CrossRef]
- Small, S.R.; Khalid, S.; Price, A.J.; Doherty, A. Device-Measured Physical Activity in 3,506 Individuals with Knee or Hip Arthroplasty. Med. Sci. Sports Exerc. 2023. [Google Scholar] [CrossRef]
- Brooks, G.C.; Vittinghoff, E.; Iyer, S.; Tandon, D.; Kuhar, P.; Madsen, K.A.; Marcus, G.M.; Pletcher, M.J.; Olgin, J.E. Accuracy and Usability of a Self-Administered 6-Minute Walk Test Smartphone Application. Circ. Heart Fail. 2015, 8, 905–913. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Davis-Wilson, H.C.; Hanlon, S.; Swink, L.A.; Kline, P.W.; Juarez-Colunga, E.; Melanson, E.L.; Christiansen, C.L. Maximal Daily Stepping Cadence Partially Explains Functional Capacity of Individuals with End-Stage Knee Osteoarthritis. PM R. 2023. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.I.; Williams, K.L.; Timmer, B.H.B.; Brauer, S.G. Concurrent Validity of the Garmin Vivofit®4 to Accurately Record Step Count in Older Adults in Challenging Environments. J. Aging Phys. Act. 2022, 30, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Ma, X.-K.; Zhu, Z.; Cao, Z.-B. Validity of Wrist-Wearable Activity Devices for Estimating Physical Activity in Adolescents: Comparative Study. JMIR Mhealth Uhealth 2021, 9, e18320. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gonzalez, J.; Gould, Z.R.; Moore, C.C.; Aguiar, E.J.; Ducharme, S.W.; Schuna, J.M.; Barreira, T.V.; Staudenmayer, J.; McAvoy, C.R.; Boikova, M.; et al. A Catalog of Validity Indices for Step Counting Wearable Technologies during Treadmill Walking: The CADENCE-Adults Study. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 117. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; De Salvatore, S.; Piergentili, I.; Indiveri, A.; Di Naro, C.; Santamaria, G.; Marchetti, A.; Marinis, M.G.D.; Denaro, V. Total Hip Arthroplasty: Minimal Clinically Important Difference and Patient Acceptable Symptom State for the Forgotten Joint Score 12. Int. J. Environ. Res. Public Health 2021, 18, 2267. [Google Scholar] [CrossRef]
- Clement, N.D.; Scott, C.E.H.; Hamilton, D.F.; MacDonald, D.; Howie, C.R. Meaningful Values in the Forgotten Joint Score after Total Knee Arthroplasty: Minimal Clinical Important Difference, Minimal Important and Detectable Changes, and Patient-Acceptable Symptom State. Bone Jt. J. 2021, 103-B, 846–854. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Rowe, D.A. Using Cadence to Study Free-Living Ambulatory Behaviour. Sports Med. 2012, 42, 381–398. [Google Scholar] [CrossRef]
- Kang, M.; Kim, Y.; Rowe, D.A. Measurement Considerations of Peak Stepping Cadence Measures Using National Health and Nutrition Examination Survey 2005–2006. J. Phys. Act. Health 2016, 13, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Barreira, T.V.; Katzmarzyk, P.T.; Johnson, W.D.; Tudor-Locke, C. Cadence Patterns and Peak Cadence in US Children and Adolescents: NHANES, 2005–2006. Med. Sci. Sports Exerc. 2012, 44, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
- Harding, E.M.; Gibson, A.L.; Kang, H.; Zuhl, M.N.; Sharma, H.; Blair, C.K. Self-Selected Walking Cadence after 16-Week Light-Intensity Physical Activity Intervention for Older Cancer Survivors. Int. J. Environ. Res. Public Health 2022, 19, 4768. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Camhi, S.M.; Leonardi, C.; Johnson, W.D.; Katzmarzyk, P.T.; Earnest, C.P.; Church, T.S. Patterns of Adult Stepping Cadence in the 2005–2006 NHANES. Prev. Med. 2011, 53, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Sokas, D.; Paliakaitė, B.; Rapalis, A.; Marozas, V.; Bailón, R.; Petrėnas, A. Detection of Walk Tests in Free-Living Activities Using a Wrist-Worn Device. Front. Physiol. 2021, 12, 706545. [Google Scholar] [CrossRef]
- Aguiar, E.J.; Mora-Gonzalez, J.; Ducharme, S.W.; Moore, C.C.; Gould, Z.R.; Chase, C.J.; Amalbert-Birriel, M.A.; Chipkin, S.R.; Staudenmayer, J.; Zheng, P.; et al. Cadence-Based Classification of Moderate-Intensity Overground Walking in 41- to 85-Year-Old Adults. Scand. J. Med. Sci. Sports 2023, 33, 433–443. [Google Scholar] [CrossRef]
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A.; et al. Physical Activity and Public Health: Updated Recommendation for Adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Physical Activity; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Di Brisco, A.M.; Migliorati, S. A New Mixed-effects Mixture Model for Constrained Longitudinal Data. Stat. Med. 2020, 39, 129–145. [Google Scholar] [CrossRef]
- Herle, M.; Micali, N.; Abdulkadir, M.; Loos, R.; Bryant-Waugh, R.; Hübel, C.; Bulik, C.M.; De Stavola, B.L. Identifying Typical Trajectories in Longitudinal Data: Modelling Strategies and Interpretations. Eur. J. Epidemiol. 2020, 35, 205–222. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Barreira, T.V.; Brouillette, R.M.; Foil, H.C.; Keller, J.N. Preliminary Comparison of Clinical and Free-Living Measures of Stepping Cadence in Older Adults. J. Phys. Act. Health 2013, 10, 1175–1180. [Google Scholar] [CrossRef]
- Ribeiro-Castro, A.L.; Surmacz, K.; Aguilera-Canon, M.C.; Anderson, M.B.; Van Andel, D.; Redfern, R.E.; Cook, C.E. Early Post-Operative Walking Bouts Are Associated with Improved Gait Speed and Symmetry at 90 Days. Gait Posture 2023, 107, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Lebleu, J.; Poilvache, H.; Mahaudens, P.; De Ridder, R.; Detrembleur, C. Predicting Physical Activity Recovery after Hip and Knee Arthroplasty? A Longitudinal Cohort Study. Braz. J. Phys. Ther. 2021, 25, 30–39. [Google Scholar] [CrossRef]
- Frimpong, E.; McVeigh, J.A.; van der Jagt, D.; Mokete, L.; Kaoje, Y.S.; Tikly, M.; Meiring, R.M. Light Intensity Physical Activity Increases and Sedentary Behavior Decreases Following Total Knee Arthroplasty in Patients with Osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2196–2205. [Google Scholar] [CrossRef]
- Bourne, R.B.; Chesworth, B.; Davis, A.; Mahomed, N.; Charron, K. Comparing Patient Outcomes After THA and TKA: Is There a Difference? Clin. Orthop. Relat. Res. 2010, 468, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Han, H.; Aguiar, E.J.; Barreira, T.V.; Schuna, J.M.; Kang, M.; Rowe, D.A. How Fast Is Fast Enough? Walking Cadence (Steps/Min) as a Practical Estimate of Intensity in Adults: A Narrative Review. Br. J. Sports Med. 2018, 52, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.S.; Ranjeva, S.L.; Urbanek, J.K.; Karas, M.; Madariaga, M.L.L.; Huisingh-Scheetz, M. Smartphone-Based Gait Cadence to Identify Older Adults with Decreased Functional Capacity. Digit. Biomark. 2022, 6, 61–70. [Google Scholar] [CrossRef]
- Scherrenberg, M.; Bonneux, C.; Yousif Mahmood, D.; Hansen, D.; Dendale, P.; Coninx, K. A Mobile Application to Perform the Six-Minute Walk Test (6MWT) at Home: A Random Walk in the Park Is as Accurate as a Standardized 6MWT. Sensors 2022, 22, 4277. [Google Scholar] [CrossRef] [PubMed]
- Small, S.R.; Bullock, G.S.; Khalid, S.; Barker, K.; Trivella, M.; Price, A.J. Current Clinical Utilisation of Wearable Motion Sensors for the Assessment of Outcome Following Knee Arthroplasty: A Scoping Review. BMJ Open 2019, 9, e033832. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Kako, M.; Suzuki, K.; Takagi, Y.; Terai, C.; Yasuda, S.; Kadono, I.; Seki, T.; Hiraiwa, H.; Ushida, T.; et al. Impact of Variation in Physical Activity after Total Joint Replacement. J. Pain Res. 2018, 11, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.A.; Webster, K.E.; Levinger, P.; Taylor, N.F. What Proportion of People with Hip and Knee Osteoarthritis Meet Physical Activity Guidelines? A Systematic Review and Meta-Analysis. Osteoarthr. Cartil. 2013, 21, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- Webber, S.C.; Strachan, S.M.; Pachu, N.S. Sedentary Behavior, Cadence, and Physical Activity Outcomes after Knee Arthroplasty. Med. Sci. Sports Exerc. 2017, 49, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Sawano, S.; Kugo, M.; Maegawa, S.; Kawasaki, T.; Ichihashi, N. Physical Activity Promotes Gait Improvement in Patients with Total Knee Arthroplasty. J. Arthroplast. 2016, 31, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Hesseling, B.; Mathijssen, N.M.C.; van Steenbergen, L.N.; Melles, M.; Vehmeijer, S.B.W.; Porsius, J.T. Fast Starters, Slow Starters, and Late Dippers: Trajectories of Patient-Reported Outcomes After Total Hip Arthroplasty: Results from a Dutch Nationwide Database. J. Bone Jt. Surg. Am. 2019, 101, 2175–2186. [Google Scholar] [CrossRef] [PubMed]
- Luna, I.E.; Kehlet, H.; Wede, H.R.; Hoevsgaard, S.J.; Aasvang, E.K. Objectively Measured Early Physical Activity after Total Hip or Knee Arthroplasty. J. Clin. Monit. Comput. 2019, 33, 509–522. [Google Scholar] [CrossRef]
- Carmichael, H.; Overbey, D.M.; Hosokawa, P.; Goode, C.M.; Jones, T.S.; Barnett, C.C.; Jones, E.L.; Robinson, T.N. Wearable Technology-A Pilot Study to Define “Normal” Postoperative Recovery Trajectories. J. Surg. Res. 2019, 244, 368–373. [Google Scholar] [CrossRef]
- Bonnechère, B.; Timmermans, A.; Michiels, S. Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. Sensors 2023, 23, 875. [Google Scholar] [CrossRef]
- Bini, S.A.; Shah, R.F.; Bendich, I.; Patterson, J.T.; Hwang, K.M.; Zaid, M.B. Machine Learning Algorithms Can Use Wearable Sensor Data to Accurately Predict Six-Week Patient-Reported Outcome Scores Following Joint Replacement in a Prospective Trial. J. Arthroplast. 2019, 34, 2242–2247. [Google Scholar] [CrossRef]
- Emmerzaal, J.; De Brabandere, A.; van der Straaten, R.; Bellemans, J.; De Baets, L.; Davis, J.; Jonkers, I.; Timmermans, A.; Vanwanseele, B. Can the Output of a Learned Classification Model Monitor a Person’s Functional Recovery Status Post-Total Knee Arthroplasty? Sensors 2022, 22, 3698. [Google Scholar] [CrossRef]
- Babaei, N.; Hannani, N.; Dabanloo, N.J.; Bahadori, S. A Systematic Review of the Use of Commercial Wearable Activity Trackers for Monitoring Recovery in Individuals Undergoing Total Hip Replacement Surgery. Cyborg Bionic Syst. 2022, 2022, 9794641. [Google Scholar] [CrossRef]
- Park, C.; Mishra, R.; Sharafkhaneh, A.; Bryant, M.S.; Nguyen, C.; Torres, I.; Naik, A.D.; Najafi, B. Digital Biomarker Representing Frailty Phenotypes: The Use of Machine Learning and Sensor-Based Sit-to-Stand Test. Sensors 2021, 21, 3258. [Google Scholar] [CrossRef]
- Jayakumar, P.; Lin, E.; Galea, V.; Mathew, A.J.; Panda, N.; Vetter, I.; Haynes, A.B. Digital Phenotyping and Patient-Generated Health Data for Outcome Measurement in Surgical Care: A Scoping Review. J. Pers. Med. 2020, 10, 282. [Google Scholar] [CrossRef]
- Motahari-Nezhad, H.; Al-Abdulkarim, H.; Fgaier, M.; Abid, M.M.; Péntek, M.; Gulácsi, L.; Zrubka, Z. Digital Biomarker-Based Interventions: Systematic Review of Systematic Reviews. J. Med. Internet Res. 2022, 24, e41042. [Google Scholar] [CrossRef]
- Hoogland, J.; Wijnen, A.; Munsterman, T.; Gerritsma, C.L.; Dijkstra, B.; Zijlstra, W.P.; Annegarn, J.; Ibarra, F.; Zijlstra, W.; Stevens, M. Feasibility and Patient Experience of a Home-Based Rehabilitation Program Driven by a Tablet App and Mobility Monitoring for Patients After a Total Hip Arthroplasty. JMIR Mhealth Uhealth 2019, 7, e10342. [Google Scholar] [CrossRef]
- Dias Correia, F.; Nogueira, A.; Magalhães, I.; Guimarães, J.; Moreira, M.; Barradas, I.; Molinos, M.; Teixeira, L.; Pires, J.; Seabra, R.; et al. Digital Versus Conventional Rehabilitation After Total Hip Arthroplasty: A Single-Center, Parallel-Group Pilot Study. JMIR Rehabil. Assist. Technol. 2019, 6, e14523. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.M.; Onyeukwu, C.; Smith, C.N.; Oh, A.; Devito Dabbs, A.; Piva, S.R.; Popchak, A.J.; Lynch, A.D.; Irrgang, J.J.; McClincy, M.P. A Portable System for Remote Rehabilitation Following a Total Knee Replacement: A Pilot Randomized Controlled Clinical Study. Sensors 2020, 20, 6118. [Google Scholar] [CrossRef] [PubMed]
- Germini, F.; Noronha, N.; Borg Debono, V.; Abraham Philip, B.; Pete, D.; Navarro, T.; Keepanasseril, A.; Parpia, S.; de Wit, K.; Iorio, A. Accuracy and Acceptability of Wrist-Wearable Activity-Tracking Devices: Systematic Review of the Literature. J. Med. Internet Res. 2022, 24, e30791. [Google Scholar] [CrossRef]
- Kontaxis, S.; Laporta, E.; Garcia, E.; Martinis, M.; Leocani, L.; Roselli, L.; Buron, M.D.; Guerrero, A.I.; Zabala, A.; Cummins, N.; et al. Automatic Assessment of the 2-Minute Walk Distance for Remote Monitoring of People with Multiple Sclerosis. Sensors 2023, 23, 6017. [Google Scholar] [CrossRef]
- Verweel, L.; Newman, A.; Michaelchuk, W.; Packham, T.; Goldstein, R.; Brooks, D. The Effect of Digital Interventions on Related Health Literacy and Skills for Individuals Living with Chronic Diseases: A Systematic Review and Meta-Analysis. Int. J. Med. Inform. 2023, 177, 105114. [Google Scholar] [CrossRef]
- Bonnechère, B.; Kossi, O.; Mapinduzi, J.; Panda, J.; Rintala, A.; Guidetti, S.; Spooren, A.; Feys, P. Mobile Health Solutions: An Opportunity for Rehabilitation in Low- and Middle Income Countries? Front. Public Health 2022, 10, 1072322. [Google Scholar] [CrossRef]
- Toogood, P.A.; Abdel, M.P.; Spear, J.A.; Cook, S.M.; Cook, D.J.; Taunton, M.J. The Monitoring of Activity at Home after Total Hip Arthroplasty. Bone Joint J. 2016, 98-B, 1450–1454. [Google Scholar] [CrossRef]
- Twiggs, J.; Salmon, L.; Kolos, E.; Bogue, E.; Miles, B.; Roe, J. Measurement of Physical Activity in the Pre- and Early Post-Operative Period after Total Knee Arthroplasty for Osteoarthritis Using a Fitbit Flex Device. Med. Eng. Phys. 2018, 51, 31–40. [Google Scholar] [CrossRef]
Variables | Overall (n = 1144) | Hip (n = 683) | Knee (n = 461) | p-Value |
---|---|---|---|---|
Gender, female | 580, 51% | 348, 51% | 232, 50% | 0.30 |
Age, years | 62 (10) | 62 (10) | 63 (10) | 0.015 |
BMI, kg/m2 | 29.0 (10.6) | 28.0 (11.1) | 30.5 (9.7) | <0.001 |
Type of surgery | <0.001 | |||
Total | 1010, 89% | 665, 97% | 345, 75% | |
Unicondylar | 101, 8.9% | / | 101, 22% | |
Revision | 22, 1.9% | 10, 1.5% | 12, 2.6% | |
Resurfacing | 8, 0.7% | 8, 1.2% | / | |
Oxford Score | 24 (8) | 24 (8) | 25 (8) | 0.21 |
FJS | 10 [4; 20] | 10 [4; 21] | 10 [4; 19] | 0.19 |
OOS | ||||
Pain | 46 (17) | 45 (18) | 46 (16) | 0.41 |
Symptoms | 50 (18) | 47 (18) | 54 (17) | <0.001 |
ADL | 48 (18) | 46 (18) | 50 (18) | <0.001 |
QoL | 30 (18) | 31 (19) | 29 (16) | 0.30 |
Leisure and Sport | 19 [5; 31] | 25 [6; 38] | 10 [0; 25] | <0.001 |
UCLA | 3 [2; 5] | 3 [2; 5] | 3 [2; 5] | 0.30 |
Time in system, days | 81 [63; 102] | 76 [61; 96] | 91 [65; 110] | <0.001 |
Time in system since intervention, days | 62 [50; 85] | 59 [50; 69] | 78 [50; 91] | <0.001 |
Variables | Overall (n = 5806) | Hip (n = 3267) | Knee (n = 2539) | p-Value |
---|---|---|---|---|
Steps, n | 4477 [2601; 6941] | 4495 [2618; 6865] | 4455 [2569; 7072] | 0.90 |
P6MC, cadence | 61 [44; 85] | 63 [46; 85] | 58 [43; 82] | <0.001 |
P1M, cadence | 92 [68; 115] | 95 [70; 118] | 89 [66–110] | <0.001 |
Intensity, min/week | ||||
Light | 613 [371; 938] | 619 [364; 910] | 609 [315; 968] | <0.001 |
Moderate | 0 [0; 14] | 0 [0; 14] | 0 [0; 7] | 0.80 |
Vigorous | 0 [0; 0] | 0 [0; 0] | 0 [0; 0] | 0.89 |
Variables | Day | Recovery | Age | Gender | Day × Recovery | Diff. |
---|---|---|---|---|---|---|
Hip | ||||||
Steps, n | 69.0 (1.1) | 443 (77) | −11.8 (7.9) | −513 (155) | 16.5 (1.3) | 25 |
P6MC, cadence | 0.65 (0.01) | 2.44 (0.87) | −0.04 (0.08) | −4.34 (1.58) | 0.10 (0.01) | 16 |
P1M, cadence | 0.62 (0.01) | 2.7 (1.0) | −0.11 (0.8) | −4.1 (1.6) | 0.13 (0.02) | 15 |
Knee | ||||||
Steps, n | 36.5 (0.5) | 452 (62) | −12 (10) | −720 (201) | 11.8 (0.8) | 14 |
P6MC, cadence | 0.33 (0.01) | 3.4 (0.7) | −0.03 (0.01) | −6.4 (2.0) | 0.09 (0.01) | 13 |
P1M, cadence | 0.35 (0.01) | 2.6 (0.8) | 0.09 (0.10) | −6.8 (2.2) | 0.08 (0.01) | 9 |
Variables | Knee | |||
---|---|---|---|---|
Day | Type | Day × Type | Diff. | |
Steps, n | 50 (1) | 392 (147) | 11 (2) | 7 |
P6MC, cadence | 0.5 (0.01) | 4.8 (2.5) | 0.02 (0.02) | 4 |
P1M, cadence | 0.5 (0.01) | 6.3 (3.2) | 0.03 (0.02) | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebleu, J.; Daniels, K.; Pauwels, A.; Dekimpe, L.; Mapinduzi, J.; Poilvache, H.; Bonnechère, B. Incorporating Wearable Technology for Enhanced Rehabilitation Monitoring after Hip and Knee Replacement. Sensors 2024, 24, 1163. https://doi.org/10.3390/s24041163
Lebleu J, Daniels K, Pauwels A, Dekimpe L, Mapinduzi J, Poilvache H, Bonnechère B. Incorporating Wearable Technology for Enhanced Rehabilitation Monitoring after Hip and Knee Replacement. Sensors. 2024; 24(4):1163. https://doi.org/10.3390/s24041163
Chicago/Turabian StyleLebleu, Julien, Kim Daniels, Andries Pauwels, Lucie Dekimpe, Jean Mapinduzi, Hervé Poilvache, and Bruno Bonnechère. 2024. "Incorporating Wearable Technology for Enhanced Rehabilitation Monitoring after Hip and Knee Replacement" Sensors 24, no. 4: 1163. https://doi.org/10.3390/s24041163