Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Remote-Sensing Data
2.1.3. Reference Data
2.2. Methods
2.2.1. Semantic Segmentation Models
2.2.2. Test-Scheme Design
2.2.3. Modeling and Accuracy Assessment
3. Results
3.1. LAM Production Using Yearly Training Manner
3.2. LAM Production Using One-Year Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donnini, M.; Napolitano, E.; Salvati, P.; Ardizzone, F.; Bucci, F.; Fiorucci, F.; Santangelo, M.; Cardinali, M.; Guzzetti, F. Impact of Event Landslides on Road Networks: A Statistical Analysis of Two Italian Case Studies. Landslides 2017, 14, 1521–1535. [Google Scholar] [CrossRef]
- Zhong, C.; Guo, H.; Swan, I.; Gao, P.; Yao, Q.; Li, H. Evaluating Trends, Profits, and Risks of Global Cities in Recent Urban Expansion for Advancing Sustainable Development. Habitat Inter. 2023, 138, 102869. [Google Scholar] [CrossRef]
- Assilzadeh, H.; Levy, J.K.; Wang, X. Landslide Catastrophes and Disaster Risk Reduction: A GIS Framework for Landslide Prevention and Management. Remote Sens. 2010, 2, 2259–2273. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Lacasse, S.; Nadim, F. Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years. Sci. Rep. 2016, 6, 36154. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Li, C.; Gao, P.; Li, H. Discovering Vegetation Recovery and Landslide Activities in the Wenchuan Earthquake Area with Landsat Imagery. Sensors 2021, 21, 5243. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, Y.; Gao, P.; Chen, W.; Li, H.; Hou, Y.; Nuremanguli, T.; Ma, H. Landslide Mapping with Remote Sensing: Challenges and Opportunities. Int. J. Remote Sens. 2020, 41, 1555–1581. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Genova, K.; Srinivasan, P.; Zhou, H.; Barron, J.T.; Martin-Brualla, R.; Snavely, N.; Funkhouser, T. IBRNet: Learning Multi-View Image-Based Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Meena, S.R.; Soares, L.P.; Grohmann, C.H.; van Westen, C.; Bhuyan, K.; Singh, R.P.; Floris, M.; Catani, F. Landslide Detection in the Himalayas Using Machine Learning Algorithms and U-Net. Landslides 2022, 19, 1209–1229. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide Detection Using Deep Learning and Object-Based Image Analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Li, C.; Yi, B.; Gao, P.; Li, H.; Sun, J.; Chen, X.; Zhong, C. Valuable Clues for DCNN-Based Landslide Detection from a Comparative Assessment in the Wenchuan Earthquake Area. Sensors 2021, 21, 5191. [Google Scholar] [CrossRef]
- Meena, S.R.; Nava, L.; Bhuyan, K.; Puliero, S.; Soares, L.P.; Dias, H.C.; Floris, M.; Catani, F. HR-GLDD: A Globally Distributed Dataset Using Generalized DL for Rapid Landslide Mapping on HR Satellite Imagery. ESSD—Land/Geol. Geochem. 2022, 15, 3283–3298. [Google Scholar]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: Piscataway, NJ, USA; pp. 1055–1059. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021. [Google Scholar] [CrossRef]
- Behling, R.; Roessner, S.; Kaufmann, H.; Kleinschmit, B. Automated Spatiotemporal Landslide Mapping over Large Areas Using RapidEye Time Series Data. Remote Sens. 2014, 6, 8026–8055. [Google Scholar] [CrossRef]
- Chen, T.-H.K.; Prishchepov, A.V.; Fensholt, R.; Sabel, C.E. Detecting and Monitoring Long-Term Landslides in Urbanized Areas with Nighttime Light Data and Multi-Seasonal Landsat Imagery across Taiwan from 1998 to 2017. Remote Sens. Environ. 2019, 225, 317–327. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Farahani, A.; Voghoei, S.; Rasheed, K.; Arabnia, H.R. A Brief Review of Domain Adaptation. In Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020; Springer: Cham, Switzerland, 2021; pp. 877–894. [Google Scholar]
- Voghoei, S.; Hashemi Tonekaboni, N.; Wallace, J.G.; Arabnia, H.R. Deep Learning at the Edge. In Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; IEEE: Piscataway, NJ, USA; pp. 895–901. [Google Scholar]
- Chang, H.S.; Fu, M.C.; Hu, J.; Marcus, S.I. Google DeepMind’s AlphaGo: Operations Research’s Unheralded Role in the Path-Breaking Achievement. Or/Ms Today 2016, 43, 24–30. [Google Scholar]
- Narayan Das, N.; Kumar, N.; Kaur, M.; Kumar, V.; Singh, D. Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-Rays. IRBM 2022, 43, 114–119. [Google Scholar] [CrossRef]
- Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution Pattern of Earthquake-Induced Landslides Triggered by the 12 May 2008 Wenchuan Earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Huang, R.; Li, W. Post-Earthquake Landsliding and Long-Term Impacts in the Wenchuan Earthquake Area, China. Eng. Geol. 2014, 182, 111–120. [Google Scholar] [CrossRef]
- Fan, X.; Domènech, G.; Scaringi, G.; Huang, R.; Xu, Q.; Hales, T.C.; Dai, L.; Yang, Q.; Francis, O. Spatio-Temporal Evolution of Mass Wasting after the 2008 Mw 7.9 Wenchuan Earthquake Revealed by a Detailed Multi-Temporal Inventory. Landslides 2018, 15, 2325–2341. [Google Scholar] [CrossRef]
- Qi, S.; Xu, Q.; Lan, H.; Zhang, B.; Liu, J. Spatial Distribution Analysis of Landslides Triggered by 2008.5.12 Wenchuan Earthquake, China. Eng. Geol. 2010, 116, 95–108. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef]
- Domènech, G.; Yang, F.; Guo, X.; Fan, X.; Scaringi, G.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two Multi-Temporal Datasets to Track the Enhanced Landsliding after the 2008 Wenchuan Earthquake 2018. Available online: https://zenodo.org/records/1405490 (accessed on 13 November 2018).
- Fan, X.; Scaringi, G.; Domènech, G.; Yang, F.; Guo, X.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two Multi-Temporal Datasets That Track the Enhanced Landsliding after the 2008 Wenchuan Earthquake. Earth Syst. Sci. Data 2019, 11, 35–55. [Google Scholar] [CrossRef]
- EarthExplorer. Available online: https://earthexplorer.usgs.gov (accessed on 1 August 2021).
- Zhang, W.; Li, H.; Han, L.; Chen, L.; Wang, L. Slope Stability Prediction Using Ensemble Learning Techniques: A Case Study in Yunyang County, Chongqing, China. J. Rock Mech. Geotech. Eng. 2022, 14, 1089–1099. [Google Scholar] [CrossRef]
- Pradhan, B.; Dikshit, A.; Lee, S.; Kim, H. An Explainable AI (XAI) Model for Landslide Susceptibility Modeling. Appl. Soft Comput. 2023, 142, 110324. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Santangelo, M.; Cardinali, M.; Bucci, F.; Fiorucci, F.; Mondini, A.C. Exploring Event Landslide Mapping Using Sentinel-1 SAR Backscatter Products. Geomorphology 2022, 397, 108021. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. Application of an Evidential Belief Function Model in Landslide Susceptibility Mapping. Comput. Geosci. 2012, 44, 120–135. [Google Scholar] [CrossRef]
- Bucci, F.; Santangelo, M.; Fiorucci, F.; Ardizzone, F.; Giordan, D.; Cignetti, M.; Notti, D.; Allasia, P.; Godone, D.; Lagomarsino, D.; et al. Geomorphologic Landslide Inventory by Air Photo Interpretation of the High Agri Valley (Southern Italy). J. Maps 2021, 17, 376–388. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative Study of Landslide Susceptibility Mapping with Different Recurrent Neural Networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q. Local Climate Zone Mapping as Remote Sensing Scene Classification Using Deep Learning: A Case Study of Metropolitan China. ISPRS J. Photogramm. Remote Sens. 2020, 164, 229–242. [Google Scholar] [CrossRef]
- Parker, R.N.; Densmore, A.L.; Rosser, N.J.; de Michele, M.; Li, Y.; Huang, R.; Whadcoat, S.; Petley, D.N. Mass Wasting Triggered by the 2008 Wenchuan Earthquake Is Greater than Orogenic Growth. Nat. Geosci. 2011, 4, 449–452. [Google Scholar] [CrossRef]
- Yang, W.; Qi, W.; Zhou, J. Decreased Post-Seismic Landslides Linked to Vegetation Recovery after the 2008 Wenchuan Earthquake. Ecol. Indic. 2018, 89, 438–444. [Google Scholar] [CrossRef]
- Yang, W.; Qi, W.; Zhou, J. Effects of Precipitation and Topography on Vegetation Recovery at Landslide Sites after the 2008 Wenchuan Earthquake. Land Degrad. Develop. 2018, 29, 3355–3365. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhong, C.; Su, A.; Xiong, C.; Wang, J.; Liu, J. Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sens. 2017, 9, 249. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4–7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Hu, Z.; Li, H.; Gao, P.; Chen, J.; Zhong, C. A Comparative Analysis of Temporal Transferability between U-Net and Random Forest for Efficient Long-Term Landslide Production. 2023. [CrossRef]
Year | 2005 | 2007 | 2008 | 2009 | 2010 | 2011 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Count | 132 | 71 | 8924 | 8034 | 7617 | 9753 | 10,029 | 9644 | 10,124 | 9736 | 10,128 | 10,136 |
Area (km2) | 0.72 | 1.02 | 124.13 | 117.2 | 113.02 | 88.11 | 110.79 | 118.58 | 125.43 | 125.03 | 125.08 | 123.85 |
Year | U-Net | U-Net+++ | TransU-Net | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | Pre. | Rec. | F1. | Kap. | OA | Pre. | Rec. | F1. | Kap. | OA | Pre. | Rec. | F1. | Kap. | |
2008 | 0.81 | 0.82 | 0.73 | 0.77 | 0.58 | 0.84 | 0.84 | 0.79 | 0.82 | 0.68 | 0.80 | 0.76 | 0.83 | 0.79 | 0.63 |
2010 | 0.77 | 0.72 | 0.71 | 0.72 | 0.52 | 0.79 | 0.81 | 0.70 | 0.75 | 0.54 | 0.74 | 0.68 | 0.74 | 0.71 | 0.49 |
2011 | 0.78 | 0.78 | 0.72 | 0.75 | 0.54 | 0.77 | 0.74 | 0.68 | 0.71 | 0.49 | 0.76 | 0.74 | 0.80 | 0.77 | 0.58 |
2013 | 0.75 | 0.72 | 0.69 | 0.71 | 0.48 | 0.75 | 0.66 | 0.73 | 0.69 | 0.48 | 0.72 | 0.67 | 0.70 | 0.68 | 0.48 |
2014 | 0.74 | 0.69 | 0.70 | 0.69 | 0.46 | 0.74 | 0.71 | 0.68 | 0.69 | 0.48 | 0.73 | 0.66 | 0.58 | 0.62 | 0.37 |
2015 | 0.67 | 0.62 | 0.53 | 0.56 | 0.31 | 0.70 | 0.66 | 0.54 | 0.59 | 0.38 | 0.69 | 0.59 | 0.62 | 0.60 | 0.37 |
2016 | 0.73 | 0.62 | 0.75 | 0.68 | 0.43 | 0.74 | 0.70 | 0.64 | 0.67 | 0.43 | 0.70 | 0.62 | 0.71 | 0.66 | 0.42 |
2017 | 0.72 | 0.75 | 0.42 | 0.54 | 0.35 | 0.73 | 0.67 | 0.68 | 0.68 | 0.47 | 0.70 | 0.58 | 0.83 | 0.68 | 0.33 |
2018 | 0.69 | 0.65 | 0.36 | 0.47 | 0.23 | 0.72 | 0.74 | 0.47 | 0.57 | 0.37 | 0.70 | 0.59 | 0.56 | 0.57 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Yi, B.; Li, H.; Zhong, C.; Gao, P.; Chen, J.; Yao, Q.; Guo, H. Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production. Sensors 2023, 23, 9041. https://doi.org/10.3390/s23229041
Hu Z, Yi B, Li H, Zhong C, Gao P, Chen J, Yao Q, Guo H. Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production. Sensors. 2023; 23(22):9041. https://doi.org/10.3390/s23229041
Chicago/Turabian StyleHu, Zekun, Bangjin Yi, Hui Li, Cheng Zhong, Peng Gao, Jiaoqi Chen, Qianxiang Yao, and Haojia Guo. 2023. "Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production" Sensors 23, no. 22: 9041. https://doi.org/10.3390/s23229041