Vehicle Operation Status Monitoring Based on Distributed Acoustic Sensor
Abstract
:1. Introduction
2. Experimental Setup and Data Processing
2.1. Experimental Setup
2.2. Field Test Setup
2.3. Data Processing
3. Vehicle Monitoring
3.1. Municipal Road Test
3.2. Railway Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, H.F.; Lee, C.E. Apparatus and Method for Fiber Optic Intrusion Sensing. US Patent 5194847, 16 March 1993. [Google Scholar]
- Wang, Z.; Zhang, L.; Wang, S.; Xue, N.; Peng, F.; Fan, M.; Sun, W.; Qian, X.; Rao, J.; Rao, Y. Coherent φ-OTDR based on I/Q demodulation and homodyne detection. Opt. Express 2016, 24, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Liang, K.; Ye, Q.; Cai, H.; Qu, R.; Fang, Z. Phase-sensitive OTDR system based on digital coherent detection. In Proceedings of the Asia Communications and Photonics Conference and Exhibition (ACP), Shanghai, China, 13–16 November 2011; Optical Sensors and Biophotonics III. pp. 1–6. [Google Scholar]
- Masoudi, A.; Belal, M.; Newson, T. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 2013, 24, 085204. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Shang, Y.; Liu, X.; Peng, G. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry. Opt. Commun. 2015, 346, 172–177. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, F.; Xu, D.; Ye, Q.; Cai, H.; Fang, Z. Phase-sensitive optical time-domain reflectometer based on a 120° phase difference Michelson interferometer. Chin. Phys. Lett. 2016, 33, 50701. [Google Scholar] [CrossRef]
- Dandridge, A.; Tveten, A.B.; Giallorenzi, T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE Trans. Microw. Theory Tech. 1982, 30, 1635–1641. [Google Scholar] [CrossRef]
- Fang, G.; Xu, T.; Feng, S.; Li, F. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. J. Light. Technol. 2015, 33, 2811–2816. [Google Scholar] [CrossRef]
- Wellbrock, G.A.; Xia, T.J.; Huang, M.; Chen, Y.; Salemi, M.; Huang, Y.; Ji, P.; Ip, E.; Wang, T. First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by using Fiber Carrying High Speed Data. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; Volume 18618401, pp. 1–3. [Google Scholar]
- Huang, M.; Salemi, M.; Chen, Y.; Zhao, J.; Xia, T.; Wellbrock, G.A.; Huang, Y.; Milione, G.; Ip, E.; Ji, P.; et al. First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication over an Operational Telecom Network. J. Light. Technol. 2020, 38, 75–81. [Google Scholar] [CrossRef]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Tribaldos, V.R.; Ulrich, C.; Freifeld, B.; Daley, T.; et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep. 2019, 9, 1328. [Google Scholar] [CrossRef] [PubMed]
- Chambers, K. Using DAS to investigate traffic patterns at Brady Hot Springs, Nevada, USA. Lead. Edge 2020, 39, 819–827. [Google Scholar] [CrossRef]
- Catalano, E.; Coscetta, A.; Cerri, E.; Cennamo, N.; Zeni, L.; Minardo, A. Automatic traffic monitoring by ϕ-OTDR data and Hough transform in a real-field environment. Appl. Opt. 2021, 60, 3579–3584. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Mustavee, S.; Juan, C.; Juan, G. Chapter 20—Sensing and Monitoring of Smart Transportation Systems, The Rise of Smart Cities; Butterworth-Heinemann: Oxford, UK, 2022; pp. 495–522. [Google Scholar]
- Chafiq, Y.; Tatin, M.; Postaspana, O.; Paris, J.; Maraval, D.; Lamour, V. Fiber optic sensing for monitoring structure and health of railway infrastructures. In Proceedings of the 26th International Conference on Optical Fiber Sensors (OFS 26), Lausanne, Switzerland, 24–28 September 2018; ThE97. pp. 1–4. [Google Scholar]
- Fan, C.; Ai, F.; Liu, Y.; Xu, Z.; Wu, G.; Zhang, W.; Liu, C.; Yan, Z.; Liu, D.; Sun, Q. Rail Crack Detection by Analyzing the Acoustic Transmission Process Based on Fiber Distributed Acoustic Sensor. In Proceedings of the Optical Fiber Communication Conference & Exposition 2019 (OFC 2019), San Diego, CA, USA, 3–7 March 2019; Th2A.17. pp. 1–3. [Google Scholar]
- Masoudi, A.; Milne, D.; Ferro, E.; Watson, G.; Brambilla, G.; Pen, L.L. Comprehensive Load-Deflection Analysis of Railway Track based on Distribute Acoustic Sensing. In Proceedings of the 27th International Conference on Optical Fiber Sensors (OFS 27), Virginia, VA, USA, 8–12 June 2020; T3.18. pp. 1–4. [Google Scholar]
- Chen, M.; Zhu, R.; Luo, J.; Masoudi, A.; Chen, Y.; Brambilla, G.; Xu, F. Distributed vibration sensor with a high strain dynamic range by harmonics analysis. Opt. Laser Technol. 2023, 159, 109006. [Google Scholar] [CrossRef]
- Chen, M.; Masoudi, A.; Brambilla, G. Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR. Opt. Express 2019, 27, 9684–9695. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Masoudi, A.; Parmigiani, F.; Brambilla, G. Distributed acoustic sensor based on a two-mode fiber. Opt. Express 2018, 26, 25399–25407. [Google Scholar] [CrossRef] [PubMed]
- Hartog, H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zhu, H.; Liu, W.; Wang, T.; Su, J.; Shi, B. Distributed Acoustic Sensing for Monitoring Linear Infrastructures: Current Status and Trends. Sensors 2022, 22, 7550. [Google Scholar] [CrossRef] [PubMed]
- Wamriew, D.; Pevzner, R.; Maltsev, E.; Pissarenko, D. Deep Neural Networks for Detection and Location of Microseismic Events and Velocity Model Inversion from Microseismic Data Acquired by Distributed Acoustic Sensing Array. Sensors 2021, 21, 6627. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Ding, H.; Liu, M.; Zhu, Z.; Rui, D.; Chen, Y.; Xu, F. Vehicle Operation Status Monitoring Based on Distributed Acoustic Sensor. Sensors 2023, 23, 8799. https://doi.org/10.3390/s23218799
Chen M, Ding H, Liu M, Zhu Z, Rui D, Chen Y, Xu F. Vehicle Operation Status Monitoring Based on Distributed Acoustic Sensor. Sensors. 2023; 23(21):8799. https://doi.org/10.3390/s23218799
Chicago/Turabian StyleChen, Mengmeng, Haotian Ding, Mingming Liu, Zhigao Zhu, Dongdong Rui, Ye Chen, and Fei Xu. 2023. "Vehicle Operation Status Monitoring Based on Distributed Acoustic Sensor" Sensors 23, no. 21: 8799. https://doi.org/10.3390/s23218799