Remote Sensing Monitoring and Assessment of Global Vegetation Status and Changes during 2016–2020
Abstract
:1. Introduction
2. Research Area and Data
2.1. Research Area
2.2. Data
3. Method
- (1)
- Annual Average Leaf Area Index
- (2)
- Annual Maximum Leaf Area Index
- (3)
- Anomaly of the annual average Leaf Area Index
- (4)
- Annual average Leaf Area Index change rate
4. Monitoring Results
4.1. Global Forest Ecosystem Status and Changes
4.2. Global Grassland Ecosystem Status and Changes
4.3. Global Cropland Ecosystem Status and Changes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; de Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Lawley, V.; Lewis, M.; Clarke, K.; Ostendorf, B. Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecol. Ind. 2016, 60, 1273–1283. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://undocs.Org/en/A/RES/70/1 (accessed on 12 August 2023).
- Cameggie, D.M. Remote Sensing Applications in Forestry-Analysis of Remote Sensing Data for Range Resource Management Annual Progress Report. Accession Number 69N25632. Available online: https://ntrs.nasa.gov/citations/19690016254 (accessed on 12 August 2023).
- Noss, R.F. Indicators for monitoring biodiversity—A hierarchical approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Murtaugh, P.A. The statistical evaluation of ecological indicators. Ecol. Appl. 1996, 6, 132–139. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Kumar, L.; Drielsma, M.J. Review of native vegetation condition assessment concepts, methods and future trends. J. Nat. Conserv. 2017, 40, 12–23. [Google Scholar] [CrossRef]
- Oliver, I.; Dorrough, J.; Seidel, J. A new Vegetation Integrity metric for trading losses and gains in terrestrial biodiversity value. Ecol. Indic. 2021, 124, 107341. [Google Scholar] [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N.M. Remote sensing for monitoring tropical dryland forests: A review of current research, knowledge gaps and future directions for Southern Africa. Environ. Res. Commun. 2022, 4, 042001. [Google Scholar] [CrossRef]
- Zainal, A.J.M.; Dalby, D.H.; Robinson, I.S. Monitoring marine ecological changes on the east coast of Bahrain with Landsat TM. Photogramm. Eng. Remote Sens. 1993, 59, 415–421. [Google Scholar]
- Sims, N.C.; Colloflf, M.J. Remote sensing of vegetation responses to flooding of a semi-arid floodplain: Implications for monitoring ecological effects of environmental flows. Ecol. Indic. 2012, 18, 387–391. [Google Scholar] [CrossRef]
- Karfs, R.A.; Abbott, B.N.; Scarth, P.F.; Wallace, J.F. Land condition monitoring information for reef catchments: A new era. Rangel. J. 2009, 31, 69–86. [Google Scholar] [CrossRef]
- Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Pond, B. Across the Grain: Multi-Scale Map Comparison and Land Change Assessment. Ecol. Indic. 2016, 71, 660–668. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Chang. 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Campos, G.M.; Gatica, G.M.; Cappa, F.M.; Giannoni, S.M.; Campos, C.M. Remote sensing data to assess compositional and structural indicators in dry woodland. Ecol. Indic. 2018, 88, 63–70. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Q.; Lu, A. Spatiotemporal variation in vegetation coverage and its driving factors in the Guanzhong Basin, NW China. Ecol. Inform. 2021, 64, 101371. [Google Scholar] [CrossRef]
- Krtalić, A.; Linardić, D.; Pernar, R. Framework for spatial and temporal monitoring of urban forest and vegetation conditions: Case study Zagreb, Croatia. Sustainability 2021, 13, 6055. [Google Scholar] [CrossRef]
- Suir, G.M.; Wilcox, D.A. Evaluating the use of hyperspectral imagery to calculate raster-based wetland vegetation condition indicator. Aquat. Ecosyst. Health Manag. 2021, 24, 103–114. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Singh, C.P.; Chowdary, V.M.; Bhattacharya, B.K.; Kumar, D.; Kumar, S.; Shaik, I. Vegetation health conditions assessment and mapping using AVIRIS-NG hyperspectral and field spectroscopy data for -environmental impact assessment in coal mining sites. Ecotoxicol. Environ. Saf. 2022, 239, 113650. [Google Scholar] [CrossRef]
- Amputu, V.; Knox, N.; Braun, A.; Heshmati, S.; Retzlaff, R.; Roder, A.; Tielborger, K. Unmanned aerial systems accurately map rangeland condition indicators in a dryland savannah. Ecol. Inform. 2023, 75, 102007. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhang, J.; Wang, S.S.; Miao, C.; Li, H.; Song, W.J.; Zhang, S.M. Global Ecosystems and Environment Observation: Annual Report from China (GEOARC): 2012–2021. Natl. Remote Sens. Bull. 2022, 26, 2106–2120. [Google Scholar] [CrossRef]
- Niu, Z.; Li, J.H.; Gao, Z.H.; Gong, E.D.; Zhang, S.M.; Zhang, J.; Liu, S.; Ouyang, X.Y.; Zhang, R. Progress and future of China’s annual report on remote sensing monitoring of global ecosystem and environment. J. Remote Sens. 2018, 22, 672–685. [Google Scholar] [CrossRef]
- National Remote Sensing Center of China Ministry of Science and Technology of the People’s Republic of China. Global Ecosystems and Environment Observation: Annual Report from China (GEOARC) (‘The Belt and Road Initiative’ Ecological and Environmental Conditions) 2015. Available online: https://chinageoss.cn/knowledgehub/report/reportDetail/63907356e4e3044051785026 (accessed on 12 August 2023).
- Liu, Q.H.; Wu, J.J.; Li, L.; Yu, L.; Li, J.; Xin, X.Z.; Jia, L.; Zhong, B.; Niu, Z.; Xu, X.L.; et al. Ecological environment monitoring for sustainable development goals in the Belt and Road region. J. Remote Sens. 2018, 22, 686–708. [Google Scholar]
- National Remote Sensing Center of China Ministry of Science and Technology of the People’s Republic of China. Global Ecosystem and Environment Observation Analysis Report Cooperation (GEOARC) (The Belt and Road Initiative Ecological and Environmental Conditions) 2017. Available online: https://chinageoss.cn/knowledgehub/report/reportDetail/6390893de4e304405178504b (accessed on 12 August 2023).
- National Remote Sensing Center of China. Global Ecosystem and Environment Observation Analysis Research Cooperation (GEOARC) (Sustainable Development Trend of Global Terrestrial Ecosystems) 2021. Available online: https://chinageoss.cn/knowledgehub/report/reportDetail/63a57e52f64eb66545fa02cb (accessed on 12 August 2023).
- Gu, X.F.; Li, M.R.; Xu, D.H.; Zhao, J.; Zhang, B.; Wang, S.X.; Zhang, Z.X.; Liu, Q.H.; Chen, L.F.; Li, J.H.; et al. Green Book of Remote Sensing Monitoring: Report on Remote Sensing Monitoring of China Sustainability Development (2022); Social Sciences Academic Press: Beijing, China, December 2022. [Google Scholar]
- Gu, X.F.; Li, M.R.; Xu, D.H.; Zhao, J.; Zhang, B.; Wang, S.X.; Zhang, Z.X.; Liu, Q.H.; Chen, L.F.; Li, J.H.; et al. Green Book of Remote Sensing Monitoring: Report on Remote Sensing Monitoring of China Sustainability Development (2021); Social Sciences Academic Press: Beijing, China, December 2021. [Google Scholar]
- Gu, X.F.; Li, M.R.; Xu, D.H.; Zhang, B.; Nie, X.D.; Wang, S.X.; Zhang, Z.X.; Liu, Q.H.; Li, J.H.; Huang, W.J.; et al. Green Book of Remote Sensing Monitoring: Report on Remote Sensing Monitoring of China Sustainability Development (2019); Social Sciences Academic Press: Beijing, China, April 2020. [Google Scholar]
- Gu, X.F.; Li, M.R.; Xu, D.H.; Zhang, B.; Nie, X.D.; Li, H.X.; Wang, S.X.; Zhang, Z.X.; Liu, Q.H.; Li, J.H.; et al. Green Book of Remote Sensing Monitoring: Report on Remote Sensing Monitoring of China Sustainability Development (2017); Social Sciences Academic Press: Beijing, China, July 2018. [Google Scholar]
- Gu, X.F.; Li, M.R.; Xu, D.H.; Zhang, B.; Nie, X.D.; Li, H.X.; Wang, S.X.; Zhang, Z.X.; Liu, Q.H.; Li, J.H.; et al. Green Book of Remote Sensing Monitoring: Report on Remote Sensing Monitoring of China Sustainability Development (2016); Social Sciences Academic Press: Beijing, China, June 2017. [Google Scholar]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- GCOS. Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update). Available online: https://library.wmo.int/records/item/48411-systematic-observation-requirements-for-satellite-based-products-for-climate-supplemental-details-to-the-satellite-based-component-of-the-implementation-plan-for-the-global-observing-system-for-climate-in-support-of-the-unfccc?offset=1 (accessed on 12 August 2023).
- Fang, H.L.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Xu, B.D.; Li, J.; Park, T.J.; Liu, Q.H.; Zeng, Y.L.; Yin, G.F.; Yan, K.; Chen, C.; Zhao, J.; Fan, W.L.; et al. Improving leaf area index retrieval over heterogeneous surface mixed with water. Remote Sens. Environ. 2020, 240, 111700. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Liu, Q.; Yu, W.; Li, S.; Zhao, J.; Dong, Y.; Zhang, Z.; Zhang, H.; Lin, S. Use of a BP Neural Network and Meteorological Data for Generating Spatiotemporally Continuous LAI Time Series. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Dong, Y.D.; Li, J.; Jiao, Z.T.; Liu, Q.H.; Zhao, J.; Xu, B.D.; Zhang, H.; Zhang, Z.X.; Liu, C.; Knyazikhin, Y.; et al. A Method for Retrieving Coarse-Resolution Leaf Area Index for Mixed Biomes Using a Mixed-Pixel Correction Factor. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Yang, A.; Zhong, B.; Hu, L.; Ao, K.; Li, L.; Zhao, F.; Wu, J. Assessment of Land Cover Status and Change in the World and “the Belt and Road” Region from 2016 to 2020. Sensors 2023, 23, 7158. [Google Scholar] [CrossRef]
Region | Change Rate | LAI Anomaly | Region | Change Rate | LAI Anomaly | Region | Change Rate | LAI Anomaly |
---|---|---|---|---|---|---|---|---|
Eastern Europe | 5.30% | 0.140 | East Africa | 3.17% | 0.060 | North Asia | 0.98% | 0.010 |
Central Africa | 4.98% | 0.131 | Southeast Asia | 3.00% | 0.007 | Southern Africa | 0.80% | 0.041 |
West Africa | 4.55% | 0.071 | Southern Europe | 2.77% | 0.066 | North America | −0.11% | −0.001 |
Northern Europe | 4.13% | 0.128 | South America | 2.61% | 0.102 | Central Asia | −0.84% | −0.045 |
South Asia | 4.09% | 0.086 | East Asia | 2.52% | 0.010 | Oceania | −1.77% | −0.033 |
North Africa | 3.62% | 0.038 | West Asia | 2.37% | 0.021 | |||
Western Europe | 3.28% | 0.069 | Central America | 2.00% | 0.040 |
Region | Change Rate | LAI Anomaly | Region | Change Rate | LAI Anomaly | Region | Change Rate | LAI Anomaly |
---|---|---|---|---|---|---|---|---|
Eastern Europe | 3.61% | 0.119 | Northern Europe | 1.18% | 0.030 | West Africa | 0.16% | 0.022 |
East Africa | 3.56% | 0.072 | East Asia | 1.14% | 0.009 | Western Europe | −0.22% | 0.013 |
Central Africa | 1.78% | 0.061 | South America | 1.06% | 0.008 | Central Asia | −1.47% | −0.032 |
Central America | 1.61% | 0.067 | West Asia | 0.57% | 0.004 | Oceania | −1.75% | −0.008 |
Southern Europe | 1.52% | 0.057 | North Asia | 0.52% | 0.011 | Southeast Asia | −5.08% | −0.083 |
Southern Africa | 1.49% | 0.049 | North America | 0.40% | 0.002 | |||
North Africa | 1.18% | 0.027 | South Asia | 0.27% | 0.000 |
Region | 2016 | 2020 | ||||
---|---|---|---|---|---|---|
ALAI | LAImax | Area (104 km2) | ALAI | LAImax | Area (104 km2) | |
South America | 1.36 | 8.28 | 176.04 | 1.38 | 8.57 | 178.11 |
Oceania | 1.2 | 7.99 | 63.03 | 1.11 | 8.24 | 61.19 |
East Africa | 1.06 | 8.09 | 86.21 | 1.15 | 8.24 | 89.02 |
South Asia | 0.79 | 7.9 | 259.54 | 0.93 | 8.22 | 255.99 |
Southeast Asia | 1.52 | 8.3 | 88.8 | 1.54 | 8.21 | 89.66 |
Central Africa | 0.88 | 7.78 | 11.71 | 0.85 | 8.03 | 12.41 |
Central America | 1.37 | 8.2 | 33.36 | 1.28 | 7.89 | 32.95 |
Western Europe | 1.37 | 7.58 | 58.97 | 1.49 | 7.88 | 58.96 |
Eastern Europe | 0.9 | 7.64 | 105.78 | 0.99 | 7.82 | 104.36 |
Northern Europe | 1.47 | 8.03 | 32.44 | 1.81 | 7.81 | 33.33 |
North America | 1.02 | 8.04 | 242.95 | 1.02 | 7.78 | 240.28 |
North Asia | 0.79 | 7.75 | 123.24 | 0.82 | 7.78 | 120.5 |
East Asia | 0.96 | 7.85 | 187.3 | 1.03 | 7.7 | 188.48 |
Southern Africa | 0.7 | 7.13 | 12.35 | 0.81 | 7.59 | 15.37 |
West Africa | 0.73 | 7.54 | 79.51 | 0.72 | 7.58 | 79.27 |
North Africa | 0.47 | 7.31 | 46.04 | 0.55 | 7.58 | 47.91 |
West Asia | 0.47 | 7.52 | 68.55 | 0.5 | 7.57 | 70.75 |
Southern Europe | 0.9 | 7.67 | 53.27 | 0.95 | 7.4 | 54.98 |
Central Asia | 0.5 | 7.2 | 39.84 | 0.43 | 7.17 | 38.35 |
Region | Change Rate | LAI Anomaly | Region | Change Rate | LAI Anomaly | Region | Change Rate | LAI Anomaly |
---|---|---|---|---|---|---|---|---|
Northern Europe | 7.60% | 0.193 | North Africa | 1.97% | 0.017 | North Asia | 0.28% | 0.018 |
East Africa | 4.69% | 0.129 | Southern Europe | 1.95% | 0.076 | North America | 0.25% | 0.022 |
South Asia | 3.30% | 0.096 | Central Africa | 1.49% | 0.031 | Southeast Asia | −1.08% | −0.021 |
Southern Africa | 2.73% | 0.094 | East Asia | 1.27% | 0.036 | Central Asia | −1.29% | −0.028 |
Eastern Europe | 2.50% | 0.077 | Central America | 0.59% | 0.020 | Oceania | −1.86% | 0.106 |
Western Europe | 2.09% | 0.082 | West Africa | 0.41% | 0.000 | |||
West Asia | 2.05% | 0.026 | South America | 0.39% | −0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Xin, X.; Zhao, J.; Yang, A.; Wu, S.; Zhang, H.; Yu, S. Remote Sensing Monitoring and Assessment of Global Vegetation Status and Changes during 2016–2020. Sensors 2023, 23, 8452. https://doi.org/10.3390/s23208452
Li L, Xin X, Zhao J, Yang A, Wu S, Zhang H, Yu S. Remote Sensing Monitoring and Assessment of Global Vegetation Status and Changes during 2016–2020. Sensors. 2023; 23(20):8452. https://doi.org/10.3390/s23208452
Chicago/Turabian StyleLi, Li, Xiaozhou Xin, Jing Zhao, Aixia Yang, Shanlong Wu, Hailong Zhang, and Shanshan Yu. 2023. "Remote Sensing Monitoring and Assessment of Global Vegetation Status and Changes during 2016–2020" Sensors 23, no. 20: 8452. https://doi.org/10.3390/s23208452