Mid-Level Data Fusion Combined with the Fingerprint Region for Classification DON Levels Defect of Fusarium Head Blight Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. NIR and FT-MIR Spectra Acquisition
2.3. HPLC Determination of DON Content Level
2.4. Data Analysis
2.4.1. Spectral Pretreatment
2.4.2. Feature Extraction and Data Fusion
2.5. DON Levels Classification
2.6. Software
3. Results and Discussion
3.1. Spectral Analysis and Wavelength Selection
3.1.1. Raw Spectral Analysis and Spectral Pretreatment
3.1.2. Characteristic Wavelength Selection
3.1.3. Fingerprint Information of Characteristic Wavelength Selected
3.2. Model for NIR Data
3.3. Model for FT-MIR Data
3.4. Mid-Level Data Fusion Model
3.5. Mid-Level Data Fusion Model with Fingerprint Information
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parry, D.W.; Jenkinson, P.; McLEOD, L. Fusarium ear blight (scab) in small grain cereals? A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Barbedo, J.G.; Tibola, C.S.; Fernandes, J.M. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging. Biosyst. Eng. 2015, 131, 65–76. [Google Scholar] [CrossRef]
- Maloney, P.V.; Petersen, S.; Navarro, R.A.; Marshall, D.; McKendry, A.L.; Costa, J.M.; Murphy, J.P. Digital Image Analysis Method for Estimation of Fusarium-Damaged Kernels in Wheat. Crop Sci. 2014, 54, 2077–2083. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Tibola, C.S.; Lima, M.I.P. Deoxynivalenol screening in wheat kernels using hyperspectral imaging. Biosyst. Eng. 2017, 155, 24–32. [Google Scholar] [CrossRef]
- Miedaner, T.; Heinrich, N.; Schneider, B.; Oettler, G.; Rohde, S.; Rabenstein, F. Estimation of deoxynivalenol (DON) content by symptom rating and exoantigen content for resistance selection in wheat and triticale. Euphytica 2004, 139, 123–132. [Google Scholar] [CrossRef]
- Moros, J.; Garrigues, S.; De La Guardia, M. Vibrational spectroscopy provides a green tool for multi-component analysis. TrAC Trends Anal. Chem. 2010, 29, 578–591. [Google Scholar] [CrossRef]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Villarroya, I. NIR spectroscopy: A rapid-response analytical tool. TrAC Trends Anal. Chem. 2002, 21, 240–250. [Google Scholar] [CrossRef]
- Cortés, V.; Barat, J.M.; Talens, P.; Blasco, J.; Lerma-García, M.J. A comparison between NIR and ATR-FTIR spectroscopy for varietal differentiation of Spanish intact almonds. Food Control 2018, 94, 241–248. [Google Scholar] [CrossRef]
- Oliveira-Folador, G.; Bicudo, M.D.O.; de Andrade, E.F.; Renard, C.M.-G.C.; Bureau, S.; de Castilhos, F. Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy. LWT 2018, 95, 172–178. [Google Scholar] [CrossRef]
- Pettersson, H.; Åberg, L. Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control 2003, 14, 229–232. [Google Scholar] [CrossRef]
- Levasseur-Garcia, C.; Pinson-Gadais, L.; Kleiber, D.; Surel, O. Near Infrared Spectroscopy used as a support to the diagnostic of Fusarium species. Rev. Med. Vet. 2010, 161, 438–444. [Google Scholar]
- De Girolamo, A.; Lippolis, V.; Nordkvist, E.; Visconti, A. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy. Food Addit. Contam. Part A 2009, 26, 907–917. [Google Scholar] [CrossRef] [PubMed]
- De Girolamo, A.; Cervellieri, S.; Visconti, A.; Pascale, M. Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy. Toxins 2014, 6, 3129–3143. [Google Scholar] [CrossRef] [Green Version]
- Delwiche, S.R. Classification of Scab- and other Mold-Damaged Wheat Kernels by Near–Infrared Reflectance Spectroscopy. Trans. ASAE 2003, 46, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Yu, P. Comparison of grating-based near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy based on spectral preprocessing and wavelength selection for the determination of crude protein and moisture content in wheat. Food Control 2017, 82, 57–65. [Google Scholar] [CrossRef]
- Pedersen, M.; Wegner, C.; Phansak, P.; Sarath, G.; Gaussoin, R.; Schlegel, V. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, P.; Pierna, J.F.; Abbas, O.; Dardenne, P.; Baeten, V. Origin identification of dried distillers grains with solubles using attenuated total reflection Fourier transform mid-infrared spectroscopy after in situ oil extraction. Food Chem. 2015, 189, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Grelet, C.; Bastin, C.; Gelé, M.; Davière, J.-B.; Johan, M.; Werner, A.; Reding, R.; Fernandez Pierna, J.A.; Colinet, F.G.; Dardenne, P.; et al. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 2016, 99, 4816–4825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaalberg, R.; Shetty, N.; Janss, L.; Buitenhuis, A. Genetic analysis of Fourier transform infrared milk spectra in Danish Holstein and Danish Jersey. J. Dairy Sci. 2019, 102, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Peiris, K.H.S.; Bockus, W.W.; Dowell, F.E. Infrared Spectral Properties of Germ, Pericarp, and Endosperm Sections of Sound Wheat Kernels and Those Damaged by Fusarium graminearum. Appl. Spectrosc. 2012, 66, 1053–1060. [Google Scholar] [CrossRef]
- Kos, G.; Lohninger, H.; Krska, R. Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the detection of Fusarium fungi on maize. Vib. Spectrosc. 2002, 29, 115–119. [Google Scholar] [CrossRef]
- Bai, G.; Shaner, G. Management and Resistance in Wheat and Barley to Fusarium Head Blight. Annu. Rev. Phytopathol. 2004, 42, 135–161. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Wang, L.; Li, L.; Guo, L.; Huang, F.; Zhao, H. Determination of 10-Hydroxy-2-Decenoic Acid of Royal Jelly Using Near-Infrared Spectroscopy Combined with Chemometrics. J. Food Sci. 2019, 84, 2458–2466. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.M.; Goicoechea, H.C. Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines. Anal. Chim. Acta 2020, 1126, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Casian, T.; Nagy, B.; Kovács, B.; Galata, D.L.; Hirsch, E.; Farkas, A. Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology—A Review. Molecules 2022, 27, 4846. [Google Scholar] [CrossRef]
- Hayes, E.; Greene, D.; O’donnell, C.; O’shea, N.; Fenelon, M.A. Spectroscopic technologies and data fusion: Applications for the dairy industry. Front. Nutr. 2023, 9, 1074688. [Google Scholar] [CrossRef]
- Chen, J.; Ma, J.; Han, X.; Zhou, Y.; Xie, B.; Huang, F.; Li, L.; Li, Y. Rapid detection of hepatitis B virus DNA level based on interval-point data fusion of infrared spectra. J. Biophotonics 2022, 16, e202200251. [Google Scholar] [CrossRef]
- Schiavone, S.; Marchionni, B.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Grappa (Italian grape marc spirit) by Mid and Near Infrared spectroscopies coupled with chemometrics. Vib. Spectrosc. 2020, 107, 103040. [Google Scholar] [CrossRef]
- Yao, S.; Li, T.; Li, J.; Liu, H.; Wang, Y. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 257–263. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Xia, J.; Xiong, Y.; Min, S. Quantitative analysis of honey adulteration by spectrum analysis combined with several high-level data fusion strategies. Vib. Spectrosc. 2020, 108, 103060. [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples. Sens. Instrum. Food Qual. Saf. 2010, 5, 1–9. [Google Scholar] [CrossRef]
- Whatley, C.R.; Wijewardane, N.K.; Bheemanahalli, R.; Reddy, K.R.; Lu, Y. Effects of fine grinding on mid-infrared spectroscopic analysis of plant leaf nutrient content. Sci. Rep. 2023, 13, 6314. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Liu, F.; He, Y.; Wang, L.; Pan, H. Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines. J. Food Eng. 2007, 83, 430–435. [Google Scholar] [CrossRef]
- Liu, F.; He, Y.; Wang, L. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis. Anal. Chim. Acta 2008, 615, 10–17. [Google Scholar] [CrossRef]
- Basati, Z.; Jamshidi, B.; Rasekh, M.; Abbaspour-Gilandeh, Y. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 308–314. [Google Scholar] [CrossRef]
- Salgó, A.; Gergely, S. Analysis of wheat grain development using NIR spectroscopy. J. Cereal Sci. 2012, 56, 31–38. [Google Scholar] [CrossRef]
- Wu, L.; He, J.; Liu, G.; Wang, S.; He, X. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging. Postharvest Biol. Technol. 2016, 112, 134–142. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Wu, Y.; Liu, Y.; Ouyang, J. Rapid determination of the texture properties of cooked cereals using near-infrared reflectance spectroscopy. Infrared Phys. Technol. 2018, 94, 165–172. [Google Scholar] [CrossRef]
- Amir, R.M.; Anjum, F.M.; Khan, M.I.; Khan, M.R.; Pasha, I.; Nadeem, M. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J. Food Sci. Technol. 2011, 50, 1018–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Lei, Y.; Prates, L.L.; Yu, P. Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat. Food Chem. 2018, 272, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Aykas, D.P.; Menevseoglu, A. A rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics. Food Control 2020, 121, 107670. [Google Scholar] [CrossRef]
- Temizkan, R.; Doğan, M.A.; Atakan, O.; Nazlım, B.A.; Ayvaz, H. Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy. Int. J. Agric. For. Life Sci. 2020, 4, 71–78. [Google Scholar]
Model | NIR | FTIR | Mid-Level Data Fusion | Fingerprint Information for Mid-Level Data Fusion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Input Variable | Training Set (%) | Test Set (%) | Number of Input Variable | Training Set (%) | Test Set (%) | Number of Input Variable | Training Set (%) | Test Set (%) | Number of Input Variable | Training Set (%) | Test Set (%) | |
CARS-PLSDA | 9 | 96.25 | 93.10 | 13 | 87.94 | 82.76 | 22 | 94.19 | 86.21 | 16 | 97.03 | 96.55 |
MGS-PLSDA | 13 | 98.89 | 96.55 | 13 | 91.63 | 86.26 | 26 | 98.57 | 93.10 | 20 | 99.00 | 96.55 |
XLW-PLSDA | 5 | 93.49 | 93.10 | 9 | 79.21 | 72.41 | 14 | 90.56 | 89.66 | 12 | 93.83 | 93.10 |
CARS-LSSVM | 9 | 97.32 | 96.55 | 13 | 86.00 | 82.76 | 22 | 93.84 | 93.10 | 16 | 97.33 | 96.55 |
MGS-LSSVM | 13 | 97.09 | 96.55 | 13 | 88.50 | 82.76 | 26 | 95.84 | 93.10 | 20 | 98.75 | 96.55 |
XLW-LSSVM | 5 | 90.10 | 89.66 | 9 | 76.93 | 75.86 | 14 | 90.98 | 89.66 | 12 | 92.14 | 89.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, K.; Song, J.; Yuan, R.; Ren, Z. Mid-Level Data Fusion Combined with the Fingerprint Region for Classification DON Levels Defect of Fusarium Head Blight Wheat. Sensors 2023, 23, 6600. https://doi.org/10.3390/s23146600
Liang K, Song J, Yuan R, Ren Z. Mid-Level Data Fusion Combined with the Fingerprint Region for Classification DON Levels Defect of Fusarium Head Blight Wheat. Sensors. 2023; 23(14):6600. https://doi.org/10.3390/s23146600
Chicago/Turabian StyleLiang, Kun, Jinpeng Song, Rui Yuan, and Zhizhou Ren. 2023. "Mid-Level Data Fusion Combined with the Fingerprint Region for Classification DON Levels Defect of Fusarium Head Blight Wheat" Sensors 23, no. 14: 6600. https://doi.org/10.3390/s23146600