Variable Rate Point Cloud Geometry Compression Method
Abstract
:1. Introduction
- We have proposed a variable rate point clouds geometry compression framework based on modulation network. We analyze the impact of different modulation networks on the model performance, and the experimental results show that the convolution neural network achieves better performance.
- We have introduced the contrastive learning to increase the bit rate range of the model, which solves the bit rate concentration problem brought by the traditional rate distortion optimization.
- We have proposed the boundary learning for the point cloud reconstruction, which focuses on the boundary points to ensure the visualization quality of the point cloud.
2. Related Work
2.1. Learned Point Cloud Compression
2.2. Variable Rate Compression
3. Proposed Method
3.1. Overall Framework
3.2. Variable Rate Point Cloud Geometry Compression
3.3. Boundary Learning
3.4. Loss Function
4. Results and Discussion
4.1. Implementation Detail
4.1.1. Dataset
4.1.2. Training Strategy
4.2. Performance Evaluation
5. Ablation Experiments
5.1. Scaling Networks
5.2. Contrastive Learning
5.3. Boundary Learning
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flynn, D. Geometry Encoding of Duplicate Points. U.S. Patent 11,475,605, 15 July 2022. [Google Scholar]
- Abdulrahman, A.A.; Rasheed, M.; Shihab, S. The Analytic of image processing smoothing spaces using wavelet. J. Phys. Conf. Ser. 2021, 1879, 022118. [Google Scholar]
- ISO/IEC JTC1/SC29/WG11 N18189; G-PCC Codec Description v2. Mammou, K.; Chou, P.A.; Flynn, D.; Krivokuća, M.; Nakagami, O.; Sugio, T. (Eds.) MPEG: Villar Dora, Italy, 2019; pp. 1–39.
- Quach, M.; Valenzise, G.; Dufaux, F. Learning convolutional transforms for lossy point cloud geometry compression. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4320–4324. [Google Scholar]
- Li, M.; Zhang, K.; Li, J.; Zuo, W.; Timofte, R.; Zhang, D. Learning context-based nonlocal entropy modeling for image compression. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 1132–1145. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, K.; Shen, H. A GAN-based tunable image compression system. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 1–5 March 2020; pp. 2334–2342. [Google Scholar]
- Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Lossless coding of point cloud geometry using a deep generative model. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4617–4629. [Google Scholar]
- Agustsson, E.; Mentzer, F.; Tschannen, M.; Cavigelli, L.; Timofte, R.; Benini, L.; Gool, L.V. Soft-to-hard vector quantization for end-to-end learning compressible representations. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Ballé, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. arXiv 2018, arXiv:1802.01436. [Google Scholar]
- Minnen, D.; Ballé, J.; Toderici, G.D. Joint autoregressive and hierarchical priors for learned image compression. In Proceedings of the 32nd International Conference on Neural information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Tang, L.; Zhan, Y.; Chen, Z.; Yu, B.; Tao, D. Contrastive boundary learning for point cloud segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8489–8499. [Google Scholar]
- Zhao, K.; Hu, J.; Shao, H.; Hu, J. Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy. Reliab. Eng. Syst. Saf. 2023, 236, 109246. [Google Scholar] [CrossRef]
- Zhao, K.; Jia, F.; Shao, H. A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains. Knowl.-Based Syst. 2023, 262, 110203. [Google Scholar] [CrossRef]
- Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis. IEEE Access 2020, 8, 123649–123661. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, H.; Hou, J.; Hamzaoui, R.; Gao, W. PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D Point Cloud Upsampling. IEEE Trans. Image Process. 2022, 31, 7389–7402. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Multiscale deep context modeling for lossless point cloud geometry compression. In Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
- Huang, L.; Wang, S.; Wong, K.; Liu, J.; Urtasun, R. Octsqueeze: Octree-structured entropy model for lidar compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1313–1323. [Google Scholar]
- Milani, S. ADAE: Adversarial distributed source autoencoder for point cloud compression. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3078–3082. [Google Scholar]
- Huang, T.; Liu, Y. 3D point cloud geometry compression on deep learning. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 890–898. [Google Scholar]
- Que, Z.; Lu, G.; Xu, D. Voxelcontext-net: An octree based framework for point cloud compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6042–6051. [Google Scholar]
- Quach, M.; Valenzise, G.; Dufaux, F. Improved deep point cloud geometry compression. In Proceedings of the 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 21–24 September 2020; pp. 1–6. [Google Scholar]
- Wang, J.; Zhu, H.; Liu, H.; Ma, Z. Lossy point cloud geometry compression via end-to-end learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4909–4923. [Google Scholar] [CrossRef]
- Guarda, A.F.; Rodrigues, N.M.; Pereira, F. Adaptive deep learning-based point cloud geometry coding. IEEE J. Sel. Top. Signal Process. 2020, 15, 415–430. [Google Scholar] [CrossRef]
- Wang, J.; Ding, D.; Li, Z.; Ma, Z. Multiscale point cloud geometry compression. In Proceedings of the 2021 Data Compression Conference (DCC), Snowbird, UT, USA, 23–26 March 2021; pp. 73–82. [Google Scholar]
- You, K.; Gao, P. Patch-Based Deep Autoencoder for Point Cloud Geometry Compression. In Proceedings of the ACM Multimedia Asia, Gold Coast, Australia, 1–3 December 2021; pp. 1–7. [Google Scholar]
- Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Learning-based lossless compression of 3d point cloud geometry. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4220–4224. [Google Scholar]
- Toderici, G.; O’Malley, S.M.; Hwang, S.J.; Vincent, D.; Minnen, D.; Baluja, S.; Covell, M.; Sukthankar, R. Variable rate image compression with recurrent neural networks. arXiv 2015, arXiv:1511.06085. [Google Scholar]
- Cui, Z.; Wang, J.; Gao, S.; Guo, T.; Feng, Y.; Bai, B. Asymmetric gained deep image compression with continuous rate adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10532–10541. [Google Scholar]
- Guo, T.; Wang, J.; Cui, Z.; Feng, Y.; Ge, Y.; Bai, B. Variable rate image compression with content adaptive optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 122–123. [Google Scholar]
- Gupta, R.; BV, S.; Kapoor, N.; Jaiswal, R.; Nangi, S.R.; Kulkarni, K. User-Guided Variable Rate Learned Image Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 1753–1758. [Google Scholar]
- Choi, Y.; El-Khamy, M.; Lee, J. Variable rate deep image compression with a conditional autoencoder. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3146–3154. [Google Scholar]
- Kathariya, B.; Li, L.; Li, Z.; Alvarez, J.; Chen, J. Scalable point cloud geometry coding with binary tree embedded quadtree. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Al Muzaddid, M.A.; Beksi, W.J. Variable Rate Compression for Raw 3D Point Clouds. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 8748–8755. [Google Scholar]
- Huo, X.; Zhang, S.; Yang, F. Variable Rate Point Cloud Attribute Compression with Non-Local Attention Optimization. Appl. Sci. 2022, 12, 8179. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, H.; Takeuchi, M.; Katto, J. Learned image compression with discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7939–7948. [Google Scholar]
- Chen, T.; Liu, H.; Ma, Z.; Shen, Q.; Cao, X.; Wang, Y. End-to-end learnt image compression via non-local attention optimization and improved context modeling. IEEE Trans. Image Process. 2021, 30, 3179–3191. [Google Scholar] [CrossRef] [PubMed]
- Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. Generative and discriminative voxel modeling with convolutional neural networks. arXiv 2016, arXiv:1608.04236. [Google Scholar]
- Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. Shapenet: An information-rich 3d model repository. arXiv 2015, arXiv:1512.03012. [Google Scholar]
- d’Eon, E.; Harrison, B.; Myers, T.; Chou, P.A. 8i Voxelized Full Bodies-a Voxelized Point Cloud Dataset; ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input Document WG11M40059/WG1M74006; ISO: Geneva, Switzerland, 2017; Volume 7, p. 11. [Google Scholar]
- Xu, Y.; Lu, Y.; Wen, Z. Owlii Dynamic human mesh sequence dataset; ISO/IEC JTC1/SC29/WG11 m41658. In Proceedings of the 120th MPEG Meeting, Cotai Strip, China, 23–27 October 2017; Volume 1. [Google Scholar]
- Schwarz, S.; Martin-Cocher, G.; Flynn, D.; Budagavi, M. Common test conditions for point cloud compression. In Document ISO/IEC JTC1/SC29/WG11 w17766; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- ISO/IEC JTC1/SC29/WG11 N17767; Algorithm Description of Mpeg-pcc-tmc2. Zakharchenko, V. (Ed.) ISO: Geneva, Switzerland, 2018; Volume 2018.
- Rasheed, M.; Ali, A.H.; Alabdali, O.; Shihab, S.; Rashid, A.; Rashid, T.; Hamad, S.H.A. The Effectiveness of the Finite Differences Method on Physical and Medical Images Based on a Heat Diffusion Equation. J. Phys. Conf. Ser. 2021, 1999, 012080. [Google Scholar] [CrossRef]
Point Cloud | Points | Precision | |
---|---|---|---|
MVUB | Andrew | 279,664 | 9 [t] |
Davaid | 330,791 | 9 | |
Phil | 356,256 | 9 | |
Sarah | 302,437 | 9 | |
8iVFB | Longdress | 857,966 | 10 |
Loot | 805,285 | 10 | |
Redandblack | 757,691 | 10 | |
Soldier | 1,089,091 | 10 | |
Owill | Basketball player | 2,925,514 | 11 |
Dancer | 2,592,758 | 11 | |
Excise | 2,591,718 | 11 | |
Model | 2,458,429 | 11 |
Point Cloud | D1 | D2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
G-PCC (octree) | G-PCC (trisoup) | V-PCC | Learned-PCGC | PCGCv2 | G-PCC (octree) | G-PCC (trisoup) | V-PCC | Learned- PCGC | PCGCv2 | ||
8iVFB | Longdress | −81.70 | −62.32 | 26.39 | −10.46 | 44.24 | −79.16 | −75.88 | −0.84 | −19.77 | 25.51 |
Loot | −81.90 | −67.10 | 20.41 | −16.77 | 45.22 | −80.04 | −79.63 | −4.82 | −25.20 | 22.42 | |
Redandblack | −81.58 | −64.34 | −5.09 | −11.88 | 36.69 | −79.25 | −74.44 | −27.26 | −20.94 | 22.39 | |
Soldier | −82.01 | −64.20 | 5.59 | −14.09 | 34.21 | −79.43 | −76.70 | −17.12 | −19.65 | 19.44 | |
average | −81.80 | −64.49 | 11.83 | −13.30 | 40.09 | −79.47 | −76.66 | −12.51 | −21.39 | 22.44 | |
Owill | Basketball player | −84.56 | - | 50.79 | −13.46 | 76.99 | −84.51 | - | 17.74 | −25.17 | 35.25 |
Dancer | −84.93 | - | 50.12 | −24.64 | 67.81 | −84.47 | - | 17.29 | −28.03 | 32.38 | |
exercise | −82.79 | - | 73.64 | −28.41 | 70.04 | −80.85 | - | 38.40 | −26.17 | 38.67 | |
model | −85.02 | - | 62.97 | −32.45 | 59.47 | −78.67 | - | 27.57 | −31.34 | 33.33 | |
average | −84.33 | - | 59.38 | −24.74 | 68.58 | −82.13 | - | 25.25 | −27.68 | 34.91 | |
Overall average | −83.06 | −64.49 | 35.60 | −16.91 | 54.33 | −80.80 | −76.66 | 6.37 | −24.53 | 28.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, L.; Tian, J.; Zhang, Y.; Fang, Z. Variable Rate Point Cloud Geometry Compression Method. Sensors 2023, 23, 5474. https://doi.org/10.3390/s23125474
Zhuang L, Tian J, Zhang Y, Fang Z. Variable Rate Point Cloud Geometry Compression Method. Sensors. 2023; 23(12):5474. https://doi.org/10.3390/s23125474
Chicago/Turabian StyleZhuang, Lehui, Jin Tian, Yujin Zhang, and Zhijun Fang. 2023. "Variable Rate Point Cloud Geometry Compression Method" Sensors 23, no. 12: 5474. https://doi.org/10.3390/s23125474
APA StyleZhuang, L., Tian, J., Zhang, Y., & Fang, Z. (2023). Variable Rate Point Cloud Geometry Compression Method. Sensors, 23(12), 5474. https://doi.org/10.3390/s23125474