Vehicle-in-Virtual-Environment (VVE) Method for Autonomous Driving System Development, Evaluation and Demonstration
Abstract
:1. Introduction
2. Related Work
3. Proposed Approach
4. The VVE Method
5. Pedestrian Safety Using V2P
6. Experimental Protocol
7. Results of Experiments and Discussion
8. Conclusions and Recommendations for Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADAS | Advanced Driver Assistance Systems |
C-V2X | Cellular V2X |
DSRC | Dedicated Short Range Communication |
HIL | Hardware-in-the-Loop |
MIL | Model-in-the-Loop |
V2P | Vehicle to Pedestrian communication |
V2X | Vehicle to Everything communication |
VVE | Vehicle-in-Virtual-Environment |
References
- Guvenc, B.A.; Guvenc, L.; Ozturk, E.S.; Yigit, T. Model Regulator Based Individual Wheel Braking Control. In Proceedings of the 2003 IEEE Conference on Control Applications, CCA 2003, Istanbul, Turkey, 25 June 2003; Volume 1, pp. 31–36. [Google Scholar]
- Guvenc, L.; Guvenc, A.B. The Limited Integrator Model Regulator and Its Use in Vehicle Steering Control. Turk. J. Eng. Environ. Sci. 2002, 26, 473–482. [Google Scholar]
- Oncu, S.; Karaman, S.; Guvenc, L.; Ersolmaz, S.S.; Ozturk, E.S.; Cetin, E.; Sinal, M. Robust Yaw Stability Controller Design for a Light Commercial Vehicle Using a Hardware in the Loop Steering Test Rig. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 852–859. [Google Scholar]
- Lenzo, B.; Zanchetta, M.; Sorniotti, A.; Gruber, P.; De Nijs, W. Yaw Rate and Sideslip Angle Control Through Single Input Single Output Direct Yaw Moment Control. IEEE Trans. Control Syst. Technol. 2021, 29, 124–139. [Google Scholar] [CrossRef]
- Bengler, K.; Dietmayer, K.; Farber, B.; Maurer, M.; Stiller, C.; Winner, H. Three Decades of Driver Assistance Systems: Review and Future Perspectives. IEEE Intell. Transp. Syst. Mag. 2014, 6, 6–22. [Google Scholar] [CrossRef]
- Guvenç, L.; Guvenç, B.A.; Demirel, B.; Emirler, M.T. Control of Mechatronic Systems; IET Control, Robotics and Sensors Series; The Institute of Engineering and Technology: London, UK, 2017; ISBN 978-1-78561-145-2. [Google Scholar]
- Boyali, A.; Guvenc, L. Real-Time Controller Design for a Parallel Hybrid Electric Vehicle Using Neuro-Dynamic Programming Method. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 4318–4324. [Google Scholar]
- Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A Review of Motion Planning for Highway Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1826–1848. [Google Scholar] [CrossRef]
- Wang, H.; Tota, A.; Aksun-Guvenc, B.; Guvenc, L. Real Time Implementation of Socially Acceptable Collision Avoidance of a Low Speed Autonomous Shuttle Using the Elastic Band Method. Mechatronics 2018, 50, 341–355. [Google Scholar] [CrossRef]
- Guo, J.; Kurup, U.; Shah, M. Is it Safe to Drive? An Overview of Factors, Metrics, and Datasets for Driveability Assessment in Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3135–3151. [Google Scholar] [CrossRef]
- Kuwata, Y.; Teo, J.; Fiore, G.; Karaman, S.; Frazzoli, E.; How, J.P. Real-Time Motion Planning With Applications to Autonomous Urban Driving. IEEE Trans. Control Syst. Technol. 2009, 17, 1105–1118. [Google Scholar] [CrossRef]
- Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access 2020, 8, 58443–58469. [Google Scholar] [CrossRef]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Meneses-Cime, K.; Guvenc, L.; Aksun-Guvenc, B. Optimization of On-Demand Shared Autonomous Vehicle Deployments Utilizing Reinforcement Learning. Sensors 2022, 22, 8317. [Google Scholar] [CrossRef]
- Kavas-Torris, O.; Lackey, N.; Guvenc, L. Simulating the Effect of Autonomous Vehicles on Roadway Mobility in a Microscopic Traffic Simulator. Int. J. Automot. Technol. 2021, 22, 713–733. [Google Scholar] [CrossRef]
- Kavas-Torris, O.; Cantas, M.R.; Gelbal, S.; Guvenc, B.; Guvenc, L. Fuel Economy Benefit Analysis of Pass-at-Green (PaG) V2I Application on Urban Routes with STOP Signs. Int. J. Veh. Des. 2021, 83, 258–279. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, F.; Wang, J.; Zhu, S.; Gelbal, S.Y.; Kavas-Torris, O.; Aksun-Guvenc, B.; Guvenc, L. Cooperative Ecological Cruising Using Hierarchical Control Strategy with Optimal Sustainable Performance for Connected Automated Vehicles on Varying Road Conditions. J. Clean. Prod. 2020, 275, 123056. [Google Scholar] [CrossRef]
- Kavas-Torris, O.; Guvenc, L. A Comprehensive Eco-Driving Strategy for Connected and Autonomous Vehicles (CAVs) with Microscopic Traffic Simulation Testing Evaluation. Available online: https://arxiv.org/abs/2206.08306/ (accessed on 6 May 2023).
- Kavas-Torris, O.; Cantas, M.R.; Cime, K.M.; Guvenc, B.A.; Guvenc, L. The Effects of Varying Penetration Rates of L4–L5 Autonomous Vehicles on Fuel Efficiency and Mobility of Traffic Networks; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Guvenc, L.; Aksun-Guvenc, B.; Zhu, S.; Gelbal, S.Y. Autonomous Road Vehicle Path Planning and Tracking Control; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 978-1-119-74794-9. [Google Scholar]
- Gelbal, S.Y.; Cantas, M.R.; Guvenc, B.A.; Guvenc, L.; Surnilla, G.; Zhang, H. Mobile Safety Application for Pedestrians Utilizing P2V Communication over Bluetooth; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Gelbal, S.Y.; Aksun-Guvenc, B.; Guvenc, L. Collision Avoidance of Low Speed Autonomous Shuttles with Pedestrians. Int. J. Automot. Technol. 2020, 21, 903–917. [Google Scholar] [CrossRef]
- Emirler, M.T.; Güvenç, L.; Güvenç, B.A. Design and Evaluation of Robust Cooperative Adaptive Cruise Control Systems in Parameter Space. Int. J. Automot. Technol. 2018, 19, 359–367. [Google Scholar] [CrossRef]
- Zhu, S.; Gelbal, S.Y.; Aksun-Guvenc, B.; Guvenc, L. Parameter-Space Based Robust Gain-Scheduling Design of Automated Vehicle Lateral Control. IEEE Trans. Veh. Technol. 2019, 68, 9660–9671. [Google Scholar] [CrossRef]
- Templeton, B. Waymo and Cruise Have Both Hit 1M Miles with No Driver, But Waymo Publishes Detailed Safety Data. Available online: https://www.forbes.com/sites/bradtempleton/2023/02/28/waymo-and-cruise-have-both-hit-1m-miles-with-no-driver-but-waymo-published-detailed-safety-data/ (accessed on 13 April 2023).
- Tierno, A.; Santos, M.; Arruda, B.; Rosa, J. Open Issues for the Automotive Software Testing. In Proceedings of the 2016 12th IEEE International Conference on Industry Applications (INDUSCON), Curitiba, Brazil, 20–23 November 2016; pp. 1–8. [Google Scholar]
- Guvenc, L.; Guvenc, B.A.; Emirler, M.T. Connected and Autonomous Vehicles. In Internet of Things and Data Analytics Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 581–595. ISBN 978-1-119-17360-1. [Google Scholar]
- Pariota, L.; Coppola, A.; Di Costanzo, L.; Di Vico, A.; Andolfi, A.; D’Aniello, C.; Bifulco, G.N. Integrating Tools for an Effective Testing of Connected and Automated Vehicles Technologies. IET Intell. Transp. Syst. 2020, 14, 1025–1033. [Google Scholar] [CrossRef]
- Alghodhaifi, H.; Lakshmanan, S. Autonomous Vehicle Evaluation: A Comprehensive Survey on Modeling and Simulation Approaches. IEEE Access 2021, 9, 151531–151566. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Zhang, S.; Zheng, N. A Novel Integrated Simulation and Testing Platform for Self-Driving Cars With Hardware in the Loop. IEEE Trans. Intell. Veh. 2019, 4, 425–436. [Google Scholar] [CrossRef]
- Gelbal, S.Y.; Tamilarasan, S.; Cantas, M.R.; Guvenc, L.; Aksun-Guvenc, B. A Connected and Autonomous Vehicle Hardware-in-the-Loop Simulator for Developing Automated Driving Algorithms. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 3397–3402. [Google Scholar]
- Emirler, M.T.; Uygan, I.M.C.; Gelbal, S.Y.; Gozu, M.; Boke, T.A.; Aksun-Guvenc, B.; Guvenc, L. 2016, Vehicle Dynamics Modelling and Validation for a Hardware-in-the-Loop Vehicle Simulator. Int. J. Veh. Des. 2016, 71, 191–211. [Google Scholar] [CrossRef]
- Li, X.; Doss, A.C.A.; Guvenc, B.A.; Guvenc, L. Pre-Deployment Testing of Low Speed, Urban Road Autonomous Driving in a Simulated Environment. SAE Int. J. Adv. Curr. Prac. Mobil. 2020, 2, 3301–3311. [Google Scholar] [CrossRef]
- Takeuchi, E.; Tsubouchi, T. A 3-D Scan Matching Using Improved 3-D Normal Distributions Transform for Mobile Robotic Mapping. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; pp. 3068–3073. [Google Scholar]
- Magnusson, M.; Vaskevicius, N.; Stoyanov, T.; Pathak, K.; Birk, A. Beyond Points: Evaluating Recent 3D Scan-Matching Algorithms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3631–3637. [Google Scholar]
- Suzuki, R.; Kataoka, R.; Ji, Y.; Umeda, K.; Fujii, H.; Kono, H. SLAM Using ICP and Graph Optimization Considering Physical Properties of Environment. In Proceedings of the 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 9–11 December 2020; pp. 1–5. [Google Scholar]
- Xu, S.; Zidek, R.; Cao, Z.; Lu, P.; Wang, X.; Li, B.; Peng, H. System and Experiments of Model-Driven Motion Planning and Control for Autonomous Vehicles. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5975–5988. [Google Scholar] [CrossRef]
- Vehicle-in-Virtual-Environment Method for Autonomous Driving System Development and Evaluation. Available online: https://oied.osu.edu/technologies/vehicle-virtual-environment-method-autonomous-driving-system-development-and-evaluation (accessed on 13 April 2023).
- Cime, K.M.; Cantas, M.R.; Dowd, G.; Guvenc, L.; Guvenc, B.A.; Mittal, A.; Joshi, A.; Fishelson, J. Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Cime, K.M.; Cantas, M.R.; Fernandez, P.; Guvenc, B.A.; Guvenc, L.; Joshi, A.; Fishelson, J.; Mittal, A. Assessing the Access to Jobs by Shared Autonomous Vehicles in Marysville, Ohio: Modeling, Simulating and Validating. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 3, 2509–2515. [Google Scholar] [CrossRef]
- Hussein, A.; García, F.; Armingol, J.M.; Olaverri-Monreal, C. P2V and V2P Communication for Pedestrian Warning on the Basis of Autonomous Vehicles. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2034–2039. [Google Scholar]
- Li, C.-Y.; Salinas, G.; Huang, P.-H.; Tu, G.-H.; Hsu, G.-H.; Hsieh, T.-Y. V2PSense: Enabling Cellular-Based V2P Collision Warning Service through Mobile Sensing. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Tahir, M.N.; Mäenpää, K.; Hippi, M. Pedestrian Motion Detection & Pedestrian Communication (P2I & V2P). In Proceedings of the 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2020; pp. 1–3. [Google Scholar]
- 802.11p-2010; IEEE Standard for Information Technology–Local and Metropolitan Area Networks–Specific Requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments. IEEE: New York, NY, USA, 2010. [CrossRef]
- Gräfling, S.; Mähönen, P.; Riihijärvi, J. Performance Evaluation of IEEE 1609 WAVE and IEEE 802.11p for Vehicular Communications. In Proceedings of the 2010 Second International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, South Korea, 16–18 June 2010; pp. 344–348. [Google Scholar]
- Gheorghiu, R.A.; Cormos, A.C.; Stan, V.A.; Iordache, V. Overview of Network Topologies for V2X Communications. In Proceedings of the 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Targoviste, Romania, 29 June–1 July 2017; pp. 1–6. [Google Scholar]
- Wang, X.; Mao, S.; Gong, M.X. An Overview of 3GPP Cellular Vehicle-to-Everything Standards. GetMobile Mob. Comp. Comm. 2017, 21, 19–25. [Google Scholar] [CrossRef]
- Janeba, M.; Lehoczký, P.; Galinski, M.; Milesich, T.; Danko, J.; Kotuliak, I. Evaluation of LTE and 5G Qualitative Parameters for V2X Use Cases. In Proceedings of the 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 25–26 May 2022; pp. 165–169. [Google Scholar]
- Ahmed, M.S.; Hoque, M.A.; Khattak, A.J. Demo: Real-Time Vehicle Movement Tracking on Android Devices through Bluetooth Communication with DSRC Devices. In Proceedings of the 2016 IEEE Vehicular Networking Conference (VNC), Columbus, OH, USA, 8–10 December 2016; pp. 1–2. [Google Scholar]
- Gheorghiu, R.A.; Iordache, V.; Cormos, A.C. Analysis of Handshake Time for Bluetooth Communications to Be Implemented in Vehicular Environments. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain, 5–7 July 2017; pp. 144–147. [Google Scholar]
Method Comparison | MIL/HIL | Proving Ground | Building Block | Public Road | VVE |
---|---|---|---|---|---|
Implementation | soft/hard [15,20,28,29,30,31,32,33,39] | hard [20,33,39] | hard [20,33,37] | hard [20,25] | hard/soft [38] |
Adaptability to Different Scenarios | relatively easy [15,20,28,29,30,31,32,33,39] | difficult [20,33,39] | very difficult [20,33] | not possible [20,25,26] | easy [38] |
Vehicle Model | high fidelity [15,20,28,29,30,31,32,33,39] | real vehicle [20,33,39] | real vehicle [20,33,37] | real vehicle [20,25] | real vehicle [38] |
Safety | safe [15,20,28,29,30,31,32,33,39] | controlled experiment necessary [20,33,39] | controlled experiment necessary [20,33,37] | not safe [20] | safe [38] |
Cost | high [15,20,28,29,30,31,32,33,39] | very high [20,33,39] | very high [20,33] | very high [20] | moderate [38] |
Repeatability | high [15,20,28,29,30,31,32,33,39] | high [20,33,39] | high [20,33] | Low [20] | high [38] |
Time to Implement | moderate [15,20,28,29,30,31,32,33,39] | long [20,33,39] | long [20,33] | very long [20,25] | moderate [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Chen, H.; Gelbal, S.Y.; Aksun-Guvenc, B.; Guvenc, L. Vehicle-in-Virtual-Environment (VVE) Method for Autonomous Driving System Development, Evaluation and Demonstration. Sensors 2023, 23, 5088. https://doi.org/10.3390/s23115088
Cao X, Chen H, Gelbal SY, Aksun-Guvenc B, Guvenc L. Vehicle-in-Virtual-Environment (VVE) Method for Autonomous Driving System Development, Evaluation and Demonstration. Sensors. 2023; 23(11):5088. https://doi.org/10.3390/s23115088
Chicago/Turabian StyleCao, Xincheng, Haochong Chen, Sukru Yaren Gelbal, Bilin Aksun-Guvenc, and Levent Guvenc. 2023. "Vehicle-in-Virtual-Environment (VVE) Method for Autonomous Driving System Development, Evaluation and Demonstration" Sensors 23, no. 11: 5088. https://doi.org/10.3390/s23115088
APA StyleCao, X., Chen, H., Gelbal, S. Y., Aksun-Guvenc, B., & Guvenc, L. (2023). Vehicle-in-Virtual-Environment (VVE) Method for Autonomous Driving System Development, Evaluation and Demonstration. Sensors, 23(11), 5088. https://doi.org/10.3390/s23115088