WM–STGCN: A Novel Spatiotemporal Modeling Method for Parkinsonian Gait Recognition
Abstract
:1. Introduction
2. Related Work
2.1. Gait Patterns Analysis
2.2. Parkinson’s Gait Analysis Using Machine Learning
3. Materials and Methods
3.1. Dataset
3.2. Data Augmentation
3.2.1. Video Augmentation
3.2.2. Joint Coordinate Space Augmentation
- Joint coordinates were translated in the horizontal direction to a new position to allow change in the viewing angle. As shown in Figure 6a, we set the offset (), which means we translated the coordinates of the skeleton data with .
- Gaussian noise was added to the joint coordinate. Figure 6b shows that the addition of appropriate noise perturbs the skeletal data within a certain range, which allows errors in joint coordinate calculation—for example, interference with the environment, such as background color or cloth texture. We set three Gaussian parameter groups for the experiment for .
3.3. Data Preprocessing
3.3.1. Skeleton Data Extraction
3.3.2. Graph Structure Construction
3.4. WM–STGCN
3.4.1. WM–STGCN Structure
3.4.2. Spatial Module : Graph Convolution in the Spatial Domain
3.4.3. Weighted Adjacency Matrix with Virtual Connection
3.4.4. Temporal Module : Graph Convolution in Temporal Domain
4. Experiments
4.1. Implementation Details
4.2. Evaluation Metric
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mc Ardle, R.; Galna, B.; Donaghy, P.; Thomas, A.; Rochester, L. Do Alzheimer’s and Lewy Body Disease Have Discrete Pathological Signatures of Gait? Alzheimer’s Dement. 2019, 15, 1367–1377. [Google Scholar] [CrossRef]
- Beauchet, O.; Blumen, H.M.; Callisaya, M.L.; De Cock, A.M.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.P.; Verghese, J.; Allali, G. Spatiotemporal gait characteristics associated with cognitive impairment: A multicenter cross-sectional study, the intercontinental. Curr. Alzheimer Res. 2018, 15, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS–UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Simpson, G.M.; Angus, J.W.S. A Rating Scale for Extrapyramidal Side Effects. Acta Psychiatr. Scand. 1970, 45, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Abdul Razak, A.H.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot Plantar Pressure Measurement System: A Review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified Self and Human Movement: A Review on the Clinical Impact of Wearable Sensing and Feedback for Gait Analysis and Intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef]
- Stone, E.E.; Skubic, M. Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6491–6494. [Google Scholar] [CrossRef]
- Rocha, A.P.; Choupina, H.; Fernandes, J.M.; Rosas, M.J.; Vaz, R.; Cunha, J.P.S. Parkinson’s disease assessment based on gait analysis using an innovative RGB-D camera system. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 27–31 August 2014; pp. 3126–3129. [Google Scholar] [CrossRef]
- Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative Abilities of Microsoft Kinect and Vicon 3D Motion Capture for Gait Analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [Google Scholar] [CrossRef]
- Geerse, D.J.; Roerdink, M.; Marinus, J.; van Hilten, J.J. Assessing Walking Adaptability in Parkinson’s Disease: “The Interactive Walkway”. Front. Neurol. 2018, 9, 1096. [Google Scholar] [CrossRef]
- Dranca, L.; de Abetxuko Ruiz de Mendarozketa, L.; Goñi, A.; Illarramendi, A.; Navalpotro Gomez, I.; Delgado Alvarado, M.; Rodríguez-Oroz, M.C. Using Kinect to Classify Parkinson’s Disease Stages Related to Severity of Gait Impairment. BMC Bioinform. 2018, 19, 471. [Google Scholar] [CrossRef]
- Kim, H.N. Ambient intelligence: Placement of Kinect sensors in the home of older adults with visual disabilities. Technol. Disabil. 2020, 32, 271–283. [Google Scholar] [CrossRef]
- Müller, B.; Ilg, W.; Giese, M.A.; Ludolph, N. Validation of enhanced kinect sensor based motion capturing for gait assessment. PLoS ONE 2017, 12, e0175813. [Google Scholar] [CrossRef]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef]
- Girshick, R.; Radosavovic, I.; Gkioxari, G.P.; Doll, A.R.; He, K. Detectron. 2018. Available online: https://github.com/facebookresearch/detectron (accessed on 3 April 2023).
- Fang, H.-S.; Li, J.; Tang, H.; Xu, C.; Zhu, H.; Xiu, Y.; Li, Y.-L.; Lu, C. AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 7157–7173. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Nagashima, Y.; Mano, T.; Iwata, A.; Toda, T. Quantifying Normal and Parkinsonian Gait Features from Home Movies: Practical Application of a Deep Learning–Based 2D Pose Estimator. PLoS ONE 2019, 14, e0223549. [Google Scholar] [CrossRef] [PubMed]
- Sabo, A.; Mehdizadeh, S.; Iaboni, A.; Taati, B. Estimating Parkinsonism Severity in Natural Gait Videos of Older Adults With Dementia. IEEE J. Biomed. Health Inform. 2022, 26, 2288–2298. [Google Scholar] [CrossRef]
- Li, M.H.; Mestre, T.A.; Fox, S.H.; Taati, B. Vision-Based Assessment of Parkinsonism and Levodopa-Induced Dyskinesia with Pose Estimation. J. NeuroEng. Rehabil. 2018, 15, 97. [Google Scholar] [CrossRef]
- Li, M.H.; Mestre, T.A.; Fox, S.H.; Taati, B. Automated Assessment of Levodopa-Induced Dyskinesia: Evaluating the Responsiveness of Video-Based Features. Park. Relat. Disord. 2018, 53, 42–45. [Google Scholar] [CrossRef]
- Lu, M.; Poston, K.; Pfefferbaum, A.; Sullivan, E.V.; Fei-Fei, L.; Pohl, K.M.; Niebles, J.C.; Adeli, E. Vision-Based Estimation of MDS–UPDRS Gait Scores for Assessing Parkinson’s Disease Motor Severity. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2020: 23rd International Conference 2020, Lima, Peru, 4–8 October 2020; Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L., Eds.; Lecture Notes in Computer Science. Springer International Publishing: Cham, Switzerland, 2020; pp. 637–647. [Google Scholar] [CrossRef]
- Chen, R.J.; Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Mahmood, F. Synthetic Data in Machine Learning for Medicine and Healthcare. Nat. Biomed. Eng. 2021, 5, 493–497. [Google Scholar] [CrossRef]
- Emam, K.E.; Mosquera, L.; Hoptroff, R. Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Nikolenko, S.I. Synthetic Data for Deep Learning. arXiv 2019. [Google Scholar] [CrossRef]
- Rankin, D.; Black, M.; Bond, R.; Wallace, J.; Mulvenna, M.; Epelde, G. Reliability of Supervised Machine Learning Using Synthetic Data in Health Care: Model to Preserve Privacy for Data Sharing. JMIR Med. Inform. 2020, 8, e18910. [Google Scholar] [CrossRef]
- Yan, S.; Xiong, Y.; Lin, D. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar] [CrossRef]
- Guo, R.; Shao, X.; Zhang, C.; Qian, X. Sparse Adaptive Graph Convolutional Network for Leg Agility Assessment in Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2837–2848. [Google Scholar] [CrossRef]
- Lou, C.; Wang, S.; Liang, T.; Pang, C.; Huang, L.; Run, M.; Liu, X. A Graphene-Based Flexible Pressure Sensor with Applications to Plantar Pressure Measurement and Gait Analysis. Materials 2017, 10, 1068. [Google Scholar] [CrossRef]
- Camps, J.; Samà, A.; Martín, M.; Rodríguez-Martín, D.; Pérez-López, C.; Moreno Arostegui, J.M.; Cabestany, J.; Català, A.; Alcaine, S.; Mestre, B.; et al. Deep Learning for Freezing of Gait Detection in Parkinson’s Disease Patients in Their Homes Using a Waist-Worn Inertial Measurement Unit. Knowl. Based Syst. 2018, 139, 119–131. [Google Scholar] [CrossRef]
- Seifert, A.-K.; Amin, M.G.; Zoubir, A.M. Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures. IEEE Trans. Biomed. Eng. 2019, 66, 2629–2640. [Google Scholar] [CrossRef]
- Prakash, C.; Gupta, K.; Mittal, A.; Kumar, R.; Laxmi, V. Passive Marker Based Optical System for Gait Kinematics for Lower Extremity. Procedia Comput. Sci. 2015, 45, 176–185. [Google Scholar] [CrossRef]
- Seifallahi, M.; Soltanizadeh, H.; Hassani Mehraban, A.; Khamseh, F. Alzheimer’s Disease Detection Using Skeleton Data Recorded with Kinect Camera. Clust. Comput. 2020, 23, 1469–1481. [Google Scholar] [CrossRef]
- Nguyen, T.-N.; Huynh, H.-H.; Meunier, J. Estimating Skeleton-Based Gait Abnormality Index by Sparse Deep Auto-Encoder. In Proceedings of the 2018 IEEE Seventh International Conference on Communications and Electronics (ICCE), Hue, Vietnam, 18–20 July 2018; pp. 311–315. [Google Scholar] [CrossRef]
- Jun, K.; Lee, D.-W.; Lee, K.; Lee, S.; Kim, M.S. Feature Extraction Using an RNN Autoencoder for Skeleton-Based Abnormal Gait Recognition. IEEE Access 2020, 8, 19196–19207. [Google Scholar] [CrossRef]
- Shalin, G.; Pardoel, S.; Lemaire, E.D.; Nantel, J.; Kofman, J. Prediction and Detection of Freezing of Gait in Parkinson’s Disease from Plantar Pressure Data Using Long Short-Term Memory Neural-Networks. J. NeuroEng. Rehabil. 2021, 18, 167. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Xiao, J.; Liu, X.; Yang, Y.; Xie, D.; Zhuang, Y. Fusing Geometric Features for Skeleton-Based Action Recognition Using Multilayer LSTM Networks. IEEE Trans. Multimed. 2018, 20, 2330–2343. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, R.; Zhao, Q.; Cheng, J.; Tao, D. A Cuboid CNN Model With an Attention Mechanism for Skeleton-Based Action Recognition. IEEE Trans. Multimed. 2020, 22, 2977–2989. [Google Scholar] [CrossRef]
- Li, C.; Zhong, Q.; Xie, D.; Pu, S. Skeleton-Based Action Recognition with Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Hong Kong, China, 10–14 July 2017; pp. 597–600. [Google Scholar] [CrossRef]
- Wen, Y.-H.; Gao, L.; Fu, H.; Zhang, F.-L.; Xia, S. Graph CNNs with Motif and Variable Temporal Block for Skeleton-Based Action Recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 8989–8996. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 12018–12027. [Google Scholar] [CrossRef]
- Singh, J.P.; Jain, S.; Arora, S.; Singh, U.P. Vision-Based Gait Recognition: A Survey. IEEE Access 2018, 6, 70497–70527. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Ma, H. Attentive Spatial–Temporal Summary Networks for Feature Learning in Irregular Gait Recognition. IEEE Trans. Multimed. 2019, 21, 2361–2375. [Google Scholar] [CrossRef]
- Ye, M.; Yang, C.; Stankovic, V.; Stankovic, L.; Cheng, S. Distinct Feature Extraction for Video-Based Gait Phase Classification. IEEE Trans. Multimed. 2020, 22, 1113–1125. [Google Scholar] [CrossRef]
- Li, M.H.; Mestre, T.A.; Fox, S.H.; Taati, B. Automated Vision-Based Analysis of Levodopa-Induced Dyskinesia with Deep Learning. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 3377–3380. [Google Scholar] [CrossRef]
- Hu, K.; Wang, Z.; Mei, S.; Ehgoetz Martens, K.A.; Yao, T.; Lewis, S.J.G.; Feng, D.D. Vision-Based Freezing of Gait Detection with Anatomic Directed Graph Representation. IEEE J. Biomed. Health Inform. 2020, 24, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Neurology-Topic 13-Parkinson’s Disease Female Patient. Available online: https://www.youtube.com/watch?v=kXMydlXQYpY (accessed on 6 March 2023).
- Gait Impairments in Parkinson’s Disease. Available online: https://www.youtube.com/watch?v=pFLC9C-xH8E (accessed on 6 March 2023).
- Freezing of Gait. Available online: https://www.youtube.com/watch?v=3-wrNhyVTNE (accessed on 6 March 2023).
- Moderate and Severe Parkinsonian Gait. Available online: https://www.youtube.com/watch?v=t1IkEAkBSz4 (accessed on 6 March 2023).
- Parkinson’s Disease Gait—Moderate Severity. Available online: https://www.youtube.com/watch?v=pu5Vwf1CBO0 (accessed on 6 March 2023).
- A 66-Year-Old Man with Parkinson’s Disease Taught to Improve Walking Gait and Running Gait. Available online: https://www.youtube.com/watch?v=JUMhhwFANKE (accessed on 6 March 2023).
Type | Normal |
Number of Participants | 50 |
Mean height | 174.6 cm |
Resolution | 1080 × 1920 pxl |
Frame rate | 30 fps |
Length of sample video | 10–20 s |
Steps of sample video | 6–8 steps |
Group | Accuracy | Precision | Sensitivity | Specificity | False Alarm/FPR | Miss Rate /FNR |
---|---|---|---|---|---|---|
Gaussian noise () | 74.19% | 93.75% | 50.0% | 96.87% | 3.12% | 50.0% |
Gaussian noise () | 75.81% | 85.71% | 60.0% | 90.62% | 9.37% | 40.0% |
Gaussian noise () | 85.48% | 88.88% | 80.0% | 90.62% | 9.37% | 20.0% |
Weight Parameters | Accuracy | Precision | Sensitivity | Specificity | False Alarm/FPR | Miss Rate /FNR |
---|---|---|---|---|---|---|
Original (α = 1, β = 1, γ = 0) | 72.58% | 84.21% | 53.33% | 90.62% | 9.38% | 46.67% |
α = 1, β = 1, γ = 0.5 | 70.97% | 77.27% | 56.67% | 84.38% | 15.63% | 43.33% |
α = 0, β = 1, γ = 0.5 | 85.48% | 88.88% | 80.0% | 90.62% | 9.38% | 20.0% |
α = 0.2, β = 1, γ = 0.5 | 87.10% | 86.67% | 86.67% | 87.50% | 12.50% | 13.33% |
Methods | Accuracy | Precision | Sensitivity | F1 Score | Specificity | False Alarm /FPR | Miss Rate /FNR |
---|---|---|---|---|---|---|---|
Lstm-layer1 | 82.25% | 85.19% | 76.67% | 0.8679 | 87.5% | 12.5% | 23.33% |
Lstm-layer2 | 69.35% | 100% | 63.33% | 0.7755 | 100% | 0% | 36.67% |
KNN | 83.87% | 85.71% | 80% | 0.8276 | 87.5% | 12.5% | 20% |
Decision tree | 79.03% | 81.48% | 73.33% | 0.8461 | 84.38% | 15.63% | 26.67% |
AdaBoost | 75.81% | 85.71% | 60% | 0.7059 | 90.63% | 9.38% | 40% |
ST–GCN | 77.42% | 90% | 56.25% | 0.72 | 93.75% | 6.25% | 40% |
Proposed method | 87.10% | 86.67% | 86.67% | 0.9285 | 87.5% | 12.5% | 13.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lim, J.; Kim, M.-H.; Hur, S.; Chung, T.-M. WM–STGCN: A Novel Spatiotemporal Modeling Method for Parkinsonian Gait Recognition. Sensors 2023, 23, 4980. https://doi.org/10.3390/s23104980
Zhang J, Lim J, Kim M-H, Hur S, Chung T-M. WM–STGCN: A Novel Spatiotemporal Modeling Method for Parkinsonian Gait Recognition. Sensors. 2023; 23(10):4980. https://doi.org/10.3390/s23104980
Chicago/Turabian StyleZhang, Jieming, Jongmin Lim, Moon-Hyun Kim, Sungwook Hur, and Tai-Myoung Chung. 2023. "WM–STGCN: A Novel Spatiotemporal Modeling Method for Parkinsonian Gait Recognition" Sensors 23, no. 10: 4980. https://doi.org/10.3390/s23104980