An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem
Abstract
:1. Introduction
2. Literature Review
2.1. Literature Review of GA for Solving FJSP
2.2. Literature Review of FJSP-AGV
3. Problem Description
4. The Improved Genetic Algorithm
4.1. Initialization
4.2. Encoding Scheme
4.3. Decoding Scheme
- (1)
- With regard to the first operation of a job, of the AGVs that arrive at the machine the earliest is selected.
- (2)
- With regard to other operations of a job, of the AGVs that arrive at the machine the earliest is selected.
4.4. Selection Operator
4.5. Crossover Operator
4.6. Mutation Operator
4.7. Population Diversity Check
4.8. The Steps of the Proposed IGA
- Step 1: Initialization: Initialize the parameters and the initial population of IGA, and .
- Step 2: Evaluation: Evaluate all the individuals by the fitness of total energy consumption.
- Step 3: Genetic evolutions: Execute the genetic operations, namely selection in Section 4.4, crossover in Section 4.5, and mutation in Section 4.6.
- Step 4: Population diversity check: Check the population diversity Nt generations according to the methods in Section 4.7.
- Step 5: .
- Step 6: Termination: Has the stopping criteria been reached? If the stopping criteria is met, go to Step 7; otherwise, go to Step 2.
- Step 7: Output the best solution.
4.9. Computational Complexity Analysis
5. Experimental Results
5.1. Comparison Results of Data Set 1
5.2. Comparison Results of Data Set 2
5.3. Comparison Results of Data Set 3
5.4. Comparison Results of Data Set 4
5.5. Comparison Results of Data Set 5
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- The improved current best solutions for data sets 2 and 3 are given as follows:
- operation sequence: 2 5 6 1 5 6 2 4 3 4 1 5 2 3 6 1 4 5 6 3
- machine selection: 1 4 4 2 2 1 1 3 3 2 2 2 3 3 3 4 4 4 1 1
- AGV selection: 2 1 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 2 1 1
- operation sequence: 2 6 5 8 7 2 8 6 5 3 4 6 7 1 3 4 8 7 1
- machine selection: 1 3 4 4 4 4 2 2 1 4 3 3 3 1 1 1 2 2 3
- AGV selection: 2 1 2 1 2 1 1 1 2 1 2 1 1 1 2 2 2 2 2
- operation sequence: 6 1 5 1 2 3 6 5 6 4 1 3 2 3 5 4 2 4 6 5
- machine selection: 2 2 3 3 4 4 1 3 3 2 2 2 1 4 1 1 4 4 1 4
- AGV selection: 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 2 2 1
- operation sequence: 1 3 6 1 3 4 2 5 6 5 2 4 5 1 6 6 4 3 5 2
- machine selection: 2 2 1 2 4 4 1 1 3 3 3 3 1 2 2 2 4 4 1 1
- AGV selection: 2 1 2 1 1 1 2 1 1 2 2 1 1 1 2 1 1 1 1 1
- operation sequence: 5 6 2 8 1 3 4 5 7 7 3 4 8 2 8 6 1 7 6
- machine selection: 1 2 4 1 4 1 2 2 1 3 3 4 4 1 1 2 2 3 3
- AGV selection: 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 2 1
- operation sequence: 2 6 7 8 6 3 8 5 7 8 2 1 5 4 7 1 4 3 6
- machine selection: 4 2 4 1 4 1 2 2 1 4 3 3 4 1 2 1 2 3 3
- AGV selection: 2 1 1 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1 2
- operation sequence: 5 2 4 6 3 5 1 3 6 4 6 1 2 5 2 3 1 5 4 6
- machine selection: 2 2 4 2 4 1 1 1 3 3 3 3 1 3 2 2 4 4 1 4
- AGV selection: 2 1 2 1 2 2 1 2 2 2 2 1 1 1 2 1 1 1 1 2
- operation sequence: 7 8 3 7 3 5 10 4 2 5 6 9 4 6 8 7 5 1 3 2 9 11 5 2 7 4 8 3 10 11 6 8 1 9 9 10 1 4 11 1 6 10 11 2
- machine selection: 1 2 4 8 1 2 7 5 2 7 5 8 2 5 4 6 1 5 2 8 2 3 5 4 3 3 7 5 4 6 7 7 3 3 5 8 4 6 5 7 2 3 5 6
- AGV selection: 2 1 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 1 2 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 2 1
- operation sequence: 5 7 8 3 7 5 11 1 4 10 5 3 12 4 8 3 5 6 4 1 9 2 10 11 7 3 8 12 8 11 1 4 11 2 7 10 1 6 12 2 9 9 6 10 12 6 9 2
- machine selection: 1 7 4 8 1 2 6 5 2 7 5 8 2 5 4 6 1 5 6 8 2 4 5 4 3 3 5 5 4 6 7 7 2 3 7 6 4 6 7 7 3 3 5 8 2 3 5 8
- AGV selection: 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 1 2 1 2 2 1 1 2 1 1 1 1 1 2 2 1 2 1 1 1 2 2 1 2 2 1 2 1 1 1 2 1 1
- operation sequence: 9 3 1 7 10 5 6 10 5 5 4 1 2 3 3 4 9 8 9 8 10 1 6 6 6 6 7 5 7 7 2 1 10 8 6 8 9 9 4 3 4 8 9 1 5 4 10 2 2 2 10 5 1 3 7
- machine selection: 3 3 3 2 3 3 2 3 1 2 2 2 6 6 6 1 2 2 3 3 3 2 2 2 3 4 6 6 1 2 2 2 4 6 1 2 2 3 6 6 2 2 2 6 1 6 1 2 2 3 3 3 6 4 4
- AGV selection: 2 1 2 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 2 2 1 2 1 2 1 2 2 1 1 1 1 2 2 2 2 2 1 2 2 2 1 1 2 2 2 1 2 1
- operation sequence: 1 7 2 8 1 6 2 10 7 10 2 1 6 8 9 8 3 6 10 3 3 7 4 4 4 4 4 5 9 6 1 10 8 4 5 10 5 7 9 3 2 8 7 2 3 6 9 5 1 6 10 5 1 2 8 9 3 5
- machine selection: 6 6 6 2 5 5 5 5 5 2 2 2 1 2 2 5 5 5 2 2 2 2 2 2 4 4 4 4 4 3 6 6 6 6 2 2 5 5 5 5 5 2 2 6 6 6 6 2 6 6 6 2 4 4 4 6 6 6
- AGV selection: 2 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1
- operation sequence: 9 13 8 10 4 11 15 9 4 1 5 14 1 5 15 8 10 6 7 3 4 7 9 8 2 12 6 14 4 8 2 3 7 15 12 1 9 14 13 3 13 5 9 6 9 3 7 11 11 10 13 8 15 10 2 2 12 5 14 6 15 10 12 3 3 2 1 11 13 12 10 13 5 5 4 10 1 8 9 2 14 3 15 12 1 11 4 1 13 6 3 10 7 15 9 7 10 5 6 11 13 12 4 14 12 1 2 4 6 8 7 15 3 8 14 6 5 5 8 12 9 4 13 11 7 2 9 11 1 14 13 2 7 11 10 6 15 14 6 11 14 4 5 2 15 8 7 12 1 3
- machine selection: 4 4 7 5 5 5 5 1 8 8 7 1 2 2 2 7 7 7 8 7 3 3 3 6 6 6 4 4 1 2 3 3 1 1 7 7 5 7 1 5 7 7 5 5 2 2 5 5 5 5 4 7 3 3 3 8 8 8 5 5 1 1 4 1 7 7 5 4 4 6 7 1 4 7 1 1 4 4 4 3 1 1 6 6 6 6 5 2 2 8 1 7 4 4 4 4 5 8 8 8 4 7 7 4 5 1 5 5 5 3 8 8 8 1 1 8 5 5 4 4 5 5 4 7 7 7 4 4 5 8 7 4 2 5 5 4 7 5 1 1 2 6 6 7 7 1 1 4 4 7
- AGV selection: 2 1 2 1 1 2 1 2 2 2 1 2 1 1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 2 2 2 1 1 2 1 1 2 2 1 2 2 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 1 2 1 2 2 1 2 1 1 1 1 1 2 2 1 2 1 2 2 1 1 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 2 1 1 1
- operation sequence: 6 9 6 8 12 4 15 10 8 4 11 13 8 10 5 3 13 2 11 15 11 4 4 9 3 12 8 10 6 5 12 15 6 2 9 13 1 14 7 11 14 5 3 10 3 12 13 2 6 3 9 6 1 4 2 7 14 4 11 3 14 8 5 14 7 10 15 7 9 4 13 9 3 12 1 15 7 10 8 13 12 9 8 15 10 14 6 11 1 15 9 10 5 3 14 5 2 11 10 6 1 1 6 13 8 9
- machine selection: 2 1 1 3 4 4 3 2 4 4 2 3 3 1 1 1 4 2 3 4 4 4 4 2 2 4 3 4 4 3 2 2 4 4 3 3 4 4 1 1 1 3 3 2 2 3 3 3 3 4 3 4 4 2 3 4 4 2 4 4 1 1 3 1 1 1 3 2 3 3 4 4 1 1 1 3 4 3 3 4 3 3 2 3 4 4 4 4 4 2 2 1 1 1 1 1 1 4 4 3 4 3 3 2 2 2
- AGV selection: 2 1 1 2 1 2 1 2 1 1 1 2 1 1 1 2 1 1 2 2 1 1 1 1 2 2 2 1 1 1 2 2 1 2 1 1 1 2 1 2 1 1 1 1 2 2 2 2 1 2 2 1 2 1 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 2 1 2 1 2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1 2 1
References
- Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, B.; Gao, K.; Duan, P. An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times. Sustainability 2023, 15, 776. [Google Scholar] [CrossRef]
- Homayouni, S.M.; Fontes, D.B.M.M. Production and transport scheduling in flexible job shop manufacturing systems. J. Glob. Optim. 2021, 79, 463–502. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, C.; Shao, X.; Ren, Y.; Ren, C. Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. Int. J. Prod. Res. 2019, 4, 1119–1145. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Tang, D.; Giret, A.; Salido, M.A. Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robot. Computer-Integr. Manuf. 2019, 59, 143–157. [Google Scholar] [CrossRef]
- Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ. 2016, 174, 93–110. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, Y.; Sun, J.; Zhang, W. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 2020, 54, 100664. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, C.; Shao, X.; Ren, Y. MILP models for energy-aware flexible job shop scheduling problem. J. Clean. Prod. 2019, 210, 710–723. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, C.; Shao, X.; Zhang, B.; Ren, Y.; Lin, W. More MILP models for hybrid flow shop scheduling problem and its extended problems. Int. J. Prod. Res. 2020, 58, 3905–3930. [Google Scholar] [CrossRef]
- Meng, L.; Gao, K.; Ren, Y.; Zhang, B.; Sang, H.; Chaoyong, Z. Novel MILP and CP models for distributed hybrid flowshop scheduling problem with sequence-dependent setup times. Swarm Evol. Comput. 2022, 71, 101058. [Google Scholar] [CrossRef]
- Homayouni, S.M.; Fontes, D.B.M.M.; Gonalves, J.F. A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation. Int. Trans. Oper. Res. 2023, 30, 688–716. [Google Scholar] [CrossRef]
- Li, Y.; Gu, W.; Yuan, M.; Tang, Y. Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network. Robot. Computer-Integr. Manuf. 2022, 74, 102283. [Google Scholar] [CrossRef]
- Zou, W.; Pan, Q.; Wang, L.; Miao, Z.-H.; Peng, C. Efficient multiobjective optimization for an AGV energy-efficient scheduling problem with release time. Knowl. Based Syst. 2022, 242, 108334. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Q.; Ruiz, R.; Sang, H.-Y. A referenced iterated greedy algorithm for the distributed assembly mixed no-idle permutation flowshop scheduling problem with the total tardiness criterion. Knowl. Based Syst. 2022, 239, 108036. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Q.; He, X.; Sang, H.-Y.; Gao, K.-Z.; Jing, X.-L. The distributed flowshop scheduling problem with delivery dates and cumulative payoffs. Comput. Ind. Eng. 2022, 165, 107961. [Google Scholar] [CrossRef]
- Ren, Y.; Zhao, F.; Jin, H.; Jiao, Z.; Meng, L.; Zhang, C.; Sutherland, J.W. Rebalancing bike sharing systems for minimizing depot inventory and traveling costs. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3871–3882. [Google Scholar] [CrossRef]
- Zhang, C.; Rao, Y.; Li, P. An effective hybrid genetic algorithm for the job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2008, 39, 965–974. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Gao, L.; Gui, L. A hybrid algorithm with a new neighborhood structure for job shop scheduling problems. Comput. Ind. Eng. 2022, 169, 108205. [Google Scholar] [CrossRef]
- Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 2008, 35, 3202–3212. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, C.; Liu, Q.; Shen, W.; Gao, M. An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules. J. Manuf. Syst. 2022, 62, 650–667. [Google Scholar] [CrossRef]
- Bilge, Ü.; Ulusoy, G. A Time Window Approach to Simultaneous Scheduling of Machines and Material Handling System in an FMS. Oper. Res. 1995, 43, 911–1070. [Google Scholar] [CrossRef]
- Erol, R.; Sahin, C.; Baykasoglu, A.; Kaplanoglu, V. A multi-agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems. Appl. Soft Comput. 2012, 12, 1720–1732. [Google Scholar] [CrossRef]
- Deroussi, L.; Gourgand, M.; Tchernev, N. A simple metaheuristic approach to the simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Res. 2008, 46, 2143–2164. [Google Scholar] [CrossRef]
- Kumar, M.V.S.; Janardhana, R.; Rao, C.S.P. Simultaneous scheduling of machines and vehicles in an FMS environment with alternative routing. Int. J. Adv. Manuf. Technol. 2011, 53, 339–351. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, Y.; Seo, Y. A tabu search algorithm for simultaneous machine/AGV scheduling problem. Int. J. Prod. Res. 2014, 52, 5748–5763. [Google Scholar] [CrossRef]
- Fontes, D.B.M.M.; Homayouni, S.M. Joint production and transportation scheduling in flexible manufacturing systems. J. Glob. Optim. 2019, 74, 879–908. [Google Scholar] [CrossRef] [Green Version]
- Abdelmaguid, T.F.; Nassef, A.O.; Kamal, B.A.; Hassan, M.F. A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Res. 2004, 42, 267–281. [Google Scholar] [CrossRef]
- Lacomme, P.; Larabi, M.; Tchernev, N. Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Econ. 2013, 143, 24–34. [Google Scholar] [CrossRef]
- Ham, A. Transfer-robot task scheduling in flexible job shop. J. Intell. Manuf. 2020, 31, 1783–1793. [Google Scholar] [CrossRef]
- Reddy, B.S.P.; Rao, C.S.P. A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS. Int. J. Adv. Manuf. Technol. 2006, 31, 602–613. [Google Scholar] [CrossRef]
- Umar, U.A.; Ariffin, M.K.A.; Ismail, N.; Tang, S.H. Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. Int. J. Adv. Manuf. Technol. 2015, 81, 2123–2141. [Google Scholar] [CrossRef]
- Mousavi, M.; Yap, H.J.; Musa, S.N.; Tahriri, F.; Dawal, S.Z.M. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization. PLoS ONE 2017, 12, e0169817. [Google Scholar] [CrossRef] [Green Version]
- Caumond, A.; Lacomme, P.; Moukrim, A.; Tchernev, N. An MILP for scheduling problems in an FMS with one vehicle. Eur. J. Oper. Res. 2009, 199, 706–722. [Google Scholar] [CrossRef]
- Deroussi, L.; Norre, S. Simultaneous scheduling of machines and vehicles for the flexible job shop problem. In Proceedings of the International Conference on Metaheuristics and Nature Inspired Computing, Djerba Island, Tunisia, 27–31 October 2010. [Google Scholar]
- Imran Ali Chaudhry, A.F.R. Integrated scheduling of machines and automated guided vehicles (AGVs) in flexible job shop environment using genetic algorithms. Int. J. Ind. Eng. Comput. 2022, 13, 343–362. [Google Scholar]
- Zhang, Q.; Manier, H.; Manier, M.A. A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times. Comput. Oper. Res. 2012, 39, 1713–1723. [Google Scholar] [CrossRef]
- Cheng, L.; Tang, Q.; Zhang, Z.; Wu, S. Data mining for fast and accurate makespan estimation in machining workshops. J. Intell. Manuf. 2021, 32, 483–500. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Z.; Zhang, C.; Zhang, T.; Zhang, Y.; Yang, C. Research on flexible job shop scheduling under finite transportation conditions for digital twin workshop. Robot. Computer-Integr. Manuf. 2021, 72, 102198. [Google Scholar] [CrossRef]
Instances | Best | Mean | Worst | |||
---|---|---|---|---|---|---|
GA | IGA | GA | IGA | GA | IGA | |
MFJST01 | 485 | 485 | 498.1 | 485.0 | 517 | 485 |
MFJST02 | 476 | 463 | 487 | 472.7 | 509 | 478 |
MFJST03 | 491 | 482 | 510.9 | 491.8 | 548 | 499 |
MFJST04 | 594 | 576 | 617.5 | 593.5 | 646 | 633 |
MFJST05 | 558 | 532 | 612.3 | 567.6 | 644 | 604 |
MFJST06 | 660 | 652 | 708.8 | 675.0 | 760 | 698 |
MFJST07 | 912 | 898 | 954.5 | 928.6 | 970 | 960 |
MFJST08 | 926 | 900 | 975.7 | 940.6 | 1041 | 1010 |
MFJST09 | 1147 | 1117 | 1201.2 | 1155.3 | 1274 | 1195 |
MFJST10 | 1310 | 1228 | 1346.9 | 1311.1 | 1393 | 1347 |
Mean RPI | 2.8 | 0.0 | 4.0 | 0.0 | 5.5 | 0.0 |
Instances | MILP [3] | CP2 [29] | LAHC (H = 1000) [3] | BRKGA [11] | GATS [36] | IGA |
---|---|---|---|---|---|---|
FJSPT1 | 134 | 134 | 134 | 138 | 144 | 134 |
FJSPT2 | 114 | 114 | 114 | 118 | 118 | 114 |
FJSPT3 | 120 | 120 | 120 | 120 | 124 | 120 |
FJSPT4 | 114 | 114 | 114 | 120 | 124 | 114 |
FJSPT5 | 94 | 94 | 94 | 96 | 94 | 94 |
FJSPT6 | 138 | 138 | 138 | 138 | 144 | 138 |
FJSPT7 | 110 | 108 | 112 | 112 | 124 | 108 |
FJSPT8 | 178 | 178 | 178 | 178 | 180 | 178 |
FJSPT9 | 144 | 144 | 144 | 144 | 150 | 144 |
FJSPT10 | 174 | 174 | 174 | 174 | 178 | 174 |
Instances | MILP [3] | LAHC (H = 1000) [3] | BRKGA [11] | PGA [35] | IGA |
---|---|---|---|---|---|
EX11 | 70 | 70 | 70 | 70 | 70 |
EX21 | - | 74 | 76 | 74 | 74 |
EX41 | - | 72 | 72 | 72 | 72 |
EX51 | 59 | 59 | 61 | 59 | 59 |
EX71 | - | 81 | 81 | 82 | 81 |
EX81 | - | 94 | - | - | 91 * |
EX91 | - | 82 | 82 | 82 | 82 |
EX12 | 56 | 56 | 59 | 56 | 56 |
EX22 | 61 | 62 | 62 | 62 | 62 |
EX42 | - | 56 | 58 | 59 | 56 |
EX52 | 47 | 48 | 49 | 47 | 47 |
EX72 | - | 62 | 62 | 63 | 61 * |
EX82 | - | 82 | - | - | 80 * |
EX92 | 69 | 69 | 69 | 69 | 69 |
EX13 | 62 | 62 | 62 | 62 | 62 |
EX23 | - | 67 | 67 | 67 | 67 |
EX43 | - | 61 | 63 | 62 | 61 |
EX53 | 52 | 52 | 53 | 52 | 52 |
EX73 | - | 66 | 67 | 67 | 66 |
EX83 | - | 85 | - | - | 84 * |
EX93 | - | 73 | 74 | 74 | 73 |
EX14 | 78 | 78 | 78 | 78 | 78 |
EX24 | - | 84 | 87 | 84 | 84 |
EX44 | - | 80 | 82 | 80 | 80 |
EX54 | 64 | 64 | 68 | 64 | 64 |
EX74 | - | 94 | 97 | 95 | 94 |
EX84 | - | 102 | - | - | 102 |
EX94 | - | 87 | 89 | 87 | 87 |
Instances | MILP [3] | LAHC (H = 1000) [3] | BRKGA [11] | PGA [35] | IGA |
---|---|---|---|---|---|
EX110 | 94 | 94 | 94 | 94 | 94 |
EX210 | 104 | 104 | 104 | 106 | 104 |
EX410 | - | 92 | 92 | 93 | 92 |
EX510 | 77 | 77 | 77 | 77 | 77 |
EX710 | - | 103 | 102 | 102 | 102 |
EX810 | - | 141 | - | - | 141 |
EX910 | 118 | 118 | 119 | 118 | 118 |
EX120 | 91 | 91 | 91 | 91 | 91 |
EX220 | 102 | 102 | 102 | 103 | 102 |
EX420 | 88 | 88 | 90 | 88 | 88 |
EX520 | 76 | 76 | 76 | 76 | 76 |
EX720 | - | 99 | 98 | 99 | 98 |
EX820 | - | 138 | - | - | 138 |
EX920 | 116 | 116 | 118 | 116 | 116 |
EX130 | 92 | 92 | 95 | 92 | 92 |
EX230 | 102 | 102 | 102 | 102 | 102 |
EX430 | 89 | 89 | 90 | 89 | 89 |
EX530 | 77 | 77 | 78 | 77 | 77 |
EX730 | - | 101 | 100 | 102 | 99 * |
EX830 | - | 139 | - | - | 139 |
EX930 | 117 | 118 | 118 | 118 | 118 |
EX140 | 97 | 97 | 99 | 99 | 97 |
EX241 | 153 | 154 | 153 | 154 | 153 |
EX441 | 131 | 134 | 133 | 134 | 131 |
EX541 | 113 | 113 | 113 | 113 | 113 |
EX740 | - | 105 | 104 | 104 | 104 |
EX741 | - | 150 | 150 | 151 | 149 * |
EX840 | - | 144 | - | - | 143 * |
EX940 | 119 | 121 | 121 | 120 | 119 |
Instances | MILP [3] | LAHC (H = 1000) [3] | PGA [35] | IGA |
---|---|---|---|---|
MFJST01 | 485 | 485 | 485 | 485 |
MFJST02 | 463 | 463 | 463 | 463 |
MFJST03 | 482 | 482 | 482 | 482 |
MFJST04 | 576 | 576 | 584 | 576 |
MFJST05 | 532 | 532 | 542 | 532 |
MFJST06 | 652 | 652 | 652 | 652 |
MFJST07 | - | 898 | 1016 | 898 |
MFJST08 | - | 900 | 1214 | 900 |
MFJST09 | - | 1120 | 1415 | 1117 * |
MFJST10 | - | 1238 | 1613 | 1228 * |
Instances | LAHC (H = 1000) [3] | LAHC (H = 100) [3] | IGA |
---|---|---|---|
MKT01 | 187 | 197 | 177 * |
MKT02 | 148 | 157 | 126 * |
MKT03 | 371 | 380 | 342 * |
MKT04 | 225 | 240 | 244- |
MKT05 | 312 | 329 | 295 * |
MKT06 | 389.5 | 416.5 | 321.5 * |
MKT07 | 291 | 306 | 267 * |
MKT08 | 846 | 858 | 780.5 * |
MKT09 | 794 | 829.5 | 715 * |
MKT10 | 712.5 | 743 | 645 * |
Instances | LAHC (H = 1000) [3] | LAHC (H = 100) [3] | IGA |
---|---|---|---|
mt10c1t | 992 | 1026 | 991 * |
mt10cct | 973 | 982 | 973 |
mt10xt | 991 | 1003 | 989 * |
mt10xxt | 991 | 993 | 991 |
mt10xxxt | 983 | 1040 | 981 * |
mt10xyt | 983 | 1006 | 980 * |
mt10xyzt | 934 | 972 | 934 |
setb4c9t | 1005 | 1036 | 1004 * |
setb4cct | 979 | 1036 | 990- |
setb4xt | 994 | 1033 | 995- |
setb4xxt | 1018 | 1045 | 1017 * |
setb4xxxt | 993 | 1019 | 992 * |
setb4xyt | 969 | 1005 | 963 * |
setb4xyzt | 979 | 1041 | 978 * |
seti5c12t | 1361 | 1415 | 1347 * |
seti5cct | 1358 | 1401 | 1335 * |
seti5xt | 1365 | 1430 | 1355 * |
seti5xxt | 1409 | 1418 | 1373 * |
seti5xxxt | 1390 | 1416 | 1350 * |
seti5xyt | 1379 | 1388 | 1376 * |
seti5xyzt | 1347 | 1399 | 1309 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Cheng, W.; Zhang, B.; Zou, W.; Fang, W.; Duan, P. An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem. Sensors 2023, 23, 3815. https://doi.org/10.3390/s23083815
Meng L, Cheng W, Zhang B, Zou W, Fang W, Duan P. An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem. Sensors. 2023; 23(8):3815. https://doi.org/10.3390/s23083815
Chicago/Turabian StyleMeng, Leilei, Weiyao Cheng, Biao Zhang, Wenqiang Zou, Weikang Fang, and Peng Duan. 2023. "An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem" Sensors 23, no. 8: 3815. https://doi.org/10.3390/s23083815