Dynamic Photoresponse of a DNTT Organic Phototransistor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Phototransistor Layout
2.2. Electrical and Photoresponse Characterization Setup
3. Results and Discussion
3.1. Electrical Characterization in Dark
3.2. Dynamic Photoresponse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, L.; Liu, Z. Recent progress in organic field-effect transistor-based chem/bio-sensors. VIEW 2022, 3, 20200115. [Google Scholar] [CrossRef]
- Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex Electron 2022, 6, 1. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S.G.; Salama, K.N.; Sonar, P. Organic field-effect transistor-based flexible sensors. Chem. Soc. Rev. 2020, 49, 3423–3460. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Huang, Y.; Han, L.; Liu, R.; Su, Y.; Guo, X.; Yan, F. Recent progress in printable organic field effect transistors. J. Mater. Chem. C 2019, 7, 790–808. [Google Scholar] [CrossRef]
- Ostroverkhova, O. Organic Optoelectronic Materials: Mechanisms and Applications. Chem. Rev. 2016, 116, 13279–13412. [Google Scholar] [CrossRef] [PubMed]
- Wakayama, Y.; Hayakawa, R.; Seo, H.S. Recent progress in photoactive organic field-effect transistors. Sci. Technol. Adv. Mater. 2014, 15, 024202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavasli, A.; Gurunlu, B.; Gunturkun, D.; Isci, R.; Faraji, S. A Review on Solution-Processed Organic Phototransistors and Their Recent Developments. Electronics 2022, 11, 316. [Google Scholar] [CrossRef]
- Vega-Colado, C.; Arredondo, B.; Torres, J.C.; López-Fraguas, E.; Vergaz, R.; Martín-Martín, D.; Del Pozo, G.; Romero, B.; Apilo, P.; Quintana, X.; et al. An All-Organic Flexible Visible Light Communication System. Sensors 2018, 18, 3045. [Google Scholar] [CrossRef] [Green Version]
- Manousiadis, P.P.; Yoshida, K.; Turnbull, G.A.; Samuel, I.D.W. Organic semiconductors for visible light communications. Phil. Trans. R. Soc. 2020, A378, 20190186. [Google Scholar] [CrossRef] [Green Version]
- Griffith, M.J.; Cottam, S.; Stamenkovic, J.; Posar, J.A.; Petasecca, M. Printable Organic Semiconductors for Radiation Detection: From Fundamentals to Fabrication and Functionality. Front. Phys. 2020, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Zeidell, A.M.; Ren, T.; Filston, D.S.; Iqbal, H.F.; Holland, E.; Bourland, J.D.; Anthony, J.E.; Jurchescu, O.D. Organic Field-Effect Transistors as Flexible, Tissue-Equivalent Radiation Dosimeters in Medical Applications. Adv. Sci. 2020, 7, 2001522. [Google Scholar] [CrossRef] [PubMed]
- Calvi, S.; Basiricò, L.; Carturan, S.M.; Fratelli, I.; Valletta, A.; Aloisio, A.; De Rosa, S.; Pino, F.; Campajola, M.; Ciavatti, A.; et al. Flexible fully organic indirect detector for MeV proton beams. npj Flex Electron 2023, 7, 5. [Google Scholar] [CrossRef]
- Za’aba, N.K.; Morrison, J.J.; Taylor, D.M. Effect of relative humidity and temperature on the stability of DNTT transistors: A density of states investigation. Org. Electron. 2017, 45, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Kraft, U.; Takimiya, K.; Kang, M.J.; Rödel, R.; Letzkus, F.; Burghartz, J.N.; Weber, E.; Klauk, H. Detailed analysis and contact properties of low-voltage organic thin- film transistors based on dinaphtho[2,3-b:20,30-f]thieno[3,2-b] thiophene (DNTT) and its didecyl and diphenyl derivatives. Org. Electron. 2016, 18, 33–40. [Google Scholar] [CrossRef]
- Bharti, D.; Raghuwanshi, V.; Varun, I.; Mahato, A.K.; Tiwari, S.P. Photo-Response of Low Voltage Flexible TIPS-Pentacene Organic Field-Effect Transistors. IEEE Sensors 2017, 17, 12. [Google Scholar] [CrossRef]
- Pierre, A.; Arias, A.C. Solution-processed image sensors on flexible substrates. Flex. Print. Electron. 2016, 1, 043001. [Google Scholar] [CrossRef] [Green Version]
- Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Li, R.; Huang, H.; Qi, Y.; Xu, Y.; Song, J.; Yao, F.; Sandberg, O.J.; Meredith, P.; Armin, A.; et al. Transient analysis of photomultiplication-type organic photodiodes. Appl. Phys. Rev. 2022, 9, 021405. [Google Scholar] [CrossRef]
- Ostroverkhova, O.; Shcherbyna, S.; Cooke, D.G.; Egerton, R.; Tykwinski, R.R.; Anthony, J.E.; Hegmann, F.A. Fast photoresponse in organic semiconductors: Understanding the mechanisms and structure-property relationships. In Linear and Nonlinear Optics of Organic Materials IV, Proceedings of the Optical Science and Technology, the SPIE 49th Annual Meeting, Denver, CO, USA, 2–6 August 2004; SPIE: Bellingham, WA, USA, 2004. [Google Scholar]
- Day, J.; Subramanian, S.; Anthony, J.E.; Lu, Z.; Twieg, R.J.; Ostroverkhova, O. Photoconductivity in organic thin films: From picoseconds to seconds after excitation. J. Appl. Phys. 2008, 103, 123715. [Google Scholar] [CrossRef]
- Narayan, K.S.; Kumar, N. Light responsive polymer field-effect transistor. Appl. Phys. Lett. 2001, 79, 1891. [Google Scholar] [CrossRef]
- Wasapinyokul, K.; Milne, W.I.; Chu, D.P. Photoresponse and saturation behavior of organic thin film transistors. J. Appl. Phys. 2009, 105, 024509. [Google Scholar]
- Huang, W.; Yang, B.; Sun, J.; Liu, B.; Yang, J.; Zou, Y.; Xiong, J.; Zhou, C.; Gao, Y. Organic field-effect transistor and its photoresponse using a benzo[1,2-b:4,5-b0]difuran-based donor–acceptor conjugated polymer. Org. Electron. 2014, 15, 1050–1055. [Google Scholar] [CrossRef]
- Kösemen, Z.A.; Kösemen, A.; Öztürk, S.; Canımkurbey, B.; Erkovan, M.; Yerli, Y. Performance improvement in photosensitive organic field effect transistor by using multi-layer structure. Thin Solid Films 2019, 672, 90–99. [Google Scholar] [CrossRef]
- Zhong, J.; Wu, X.; Lan, S.; Fang, Y.; Chen, H.; Guo, T. High Performance Flexible Organic Phototransistors with Ultrashort Channel Length. ACS Photonics 2018, 5, 3712–3722. [Google Scholar] [CrossRef]
- Za’aba, N.K.; Taylor, D.M. Photo-induced effects in organic thin film transistors based on dinaphtho [2,3-b:2′,3′-f] Thieno[3,2-b′] thiophene (DNTT). Org. Electron. 2019, 65, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Milvich, J.; Zaki, T.; Aghamohammadi, M.; Rödel, R.; Kraft, U.; Klauk, H.; Burghartz, J.N. Flexible low-voltage organic phototransistors based on air-stable dinaphtho[2,3-b:20,30-f]thieno[3,2-b]thiophene (DNTT). Org. Electron. 2015, 20, 63–68. [Google Scholar] [CrossRef]
- Yu, F.; Wu, S.; Wang, X.; Zhang, G.; Lu, H.; Qiu, L. Flexible and low-voltage organic phototransistor. RSC Adv. 2017, 7, 11572. [Google Scholar] [CrossRef] [Green Version]
- Calvi, S.; Rapisarda, M.; Valletta, A.; Scagliotti, M.; De Rosa, S.; Tortora, L.; Branchini, P.; Mariucci, L. Highly sensitive organic phototransistor for flexible optical detector arrays. Organic Electronics 2022, 102, 106452. [Google Scholar] [CrossRef]
- Becharguia, H.; Mahdouani, M.; Bourguiga, R.; Branchini, P.; Fabbri, A.; De Rosa, S.; Calvi, S.; Mariucci, L.; Valletta, A.; Tortora, L. Effects of illumination on the electrical characteristics in organic thin-film transistors based on dinaphtho [2,3-b:2′,3′-f] thieno[3,2-b] thiophene (DNTT): Experiment and modeling. Synthetic Metals 2022, 283, 116985. [Google Scholar] [CrossRef]
- Available online: https://www.manualslib.com/manual/1273314/Agilent-Technologies-B1500a.html?page=34#manual (accessed on 10 January 2023).
- Klauk, H. Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643–2666. [Google Scholar] [CrossRef]
- Jia, R.; Wu, X.; Deng, W.; Zhang, X.; Huang, L.; Niu, K.; Chi, L.; Jie, J. Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors. Adv. Funct. Mater. 2019, 29, 1905657. [Google Scholar] [CrossRef]
- Jin, Z.; Gao, L.; Zhou, Q.; Wang, J. High-performance flexible ultraviolet photoconductors based on solutionprocessed ultrathin ZnO/Au nanoparticle composite films. Sci. Rep. 2015, 4, 4268. [Google Scholar]
- Sun, Z.; Liu, Z.; Li, J.; Tai, G.; Lau, S.; Yan, F. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878–5883. [Google Scholar] [CrossRef]
- Dey, A.; Singh, A.; Das, D.; Iyer, P.K. Photosensitive organic field effect transistors: The influence of ZnPc morphology and bilayer dielectrics for achieving a low operating voltage and low bias stress effect. Phys. Chem. Chem. Phys. 2016, 18, 32602–32609. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, K.; Singh, V. High-sensitivity organic phototransistors prepared by floating film transfer method. APEX 2016, 9, 091601. [Google Scholar] [CrossRef]
- Simoen, E.; Claeys, C. Random Telegraph Signals in Semiconductor Devices; IOP Publishing: Bristol, UK, 2016. [Google Scholar]
- Singh, S.; Mohapatra, Y.N. Persistent photocurrent (PPC) in solution-processed organic thin film transistors: Mechanisms of gate voltage control. J. Appl. Phys. 2016, 120, 045501. [Google Scholar] [CrossRef]
- Lutsyk, P.; Janus, K.; Mikołajczyk, M.; Sworakowski, J.; Boratyński, B.; Tłaczała, M. Long-lived persistent currents in poly(3-octylthiophene) thin film transistors. Org. Electron. 2010, 11, 490–497. [Google Scholar] [CrossRef]
- Kösemen, Z.A.; Kösemen, A.; Öztürk, S.; Canimkurbey, B.; San, S.E.; Yerli, Y.; Tunç, A.V. Effect of intrinsic polymer properties on the photo sensitive organic field-effect transistors (Photo-OFETs). Microelectron. Eng. 2016, 161, 36–42. [Google Scholar] [CrossRef]
- Mullenbach, T.K.; Curtin, I.J.; Zhang, T.; Holmes, R.J. Probing dark exciton diffusion using photovoltage. Nat. Commun. 2017, 8, 14215. [Google Scholar] [CrossRef]
- Street, R.A.; Yang, Y.; Thompson, B.C.; McCulloch, I. Capacitance Spectroscopy of Light Induced Trap States in Organic Solar Cells. J. Phys. Chem. C 2016, 120, 22169–22178. [Google Scholar] [CrossRef]
- Hamilton, M.C.; Martin, S.; Kanicki, J. Thin-Film organic polymer phototransistors. IEEE Trans. Electron. Dev. 2004, 51, 877–885. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campajola, M.; Di Meo, P.; Di Capua, F.; Branchini, P.; Aloisio, A. Dynamic Photoresponse of a DNTT Organic Phototransistor. Sensors 2023, 23, 2386. https://doi.org/10.3390/s23052386
Campajola M, Di Meo P, Di Capua F, Branchini P, Aloisio A. Dynamic Photoresponse of a DNTT Organic Phototransistor. Sensors. 2023; 23(5):2386. https://doi.org/10.3390/s23052386
Chicago/Turabian StyleCampajola, Marcello, Paolo Di Meo, Francesco Di Capua, Paolo Branchini, and Alberto Aloisio. 2023. "Dynamic Photoresponse of a DNTT Organic Phototransistor" Sensors 23, no. 5: 2386. https://doi.org/10.3390/s23052386
APA StyleCampajola, M., Di Meo, P., Di Capua, F., Branchini, P., & Aloisio, A. (2023). Dynamic Photoresponse of a DNTT Organic Phototransistor. Sensors, 23(5), 2386. https://doi.org/10.3390/s23052386