A Deep Learning-Based Semantic Segmentation Model Using MCNN and Attention Layer for Human Activity Recognition
Abstract
:1. Introduction
1.1. Research Background
1.2. Related Work
2. Materials and Methods
2.1. CEF Using DL Model
2.1.1. Feature Extraction Block Using MCNN
2.1.2. Implementation of the Attention Layer
2.1.3. Semantic Segmentation and Loss Function
2.2. Dataset Construction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
GRU | 226,833 | 839 | 1772 | 911 | 1395 | 1082 | 2427 |
1855 | 13,723 | 655 | 198 | 401 | 66 | 27 | |
1578 | 305 | 14,750 | 27 | 233 | 163 | 9 | |
2758 | 583 | 46 | 13,621 | 172 | 429 | 247 | |
939 | 70 | 269 | 222 | 15,817 | 470 | 1093 | |
1269 | 5 | 545 | 298 | 364 | 16,677 | 347 | |
1123 | 66 | 55 | 359 | 1202 | 225 | 31,480 | |
LSTM | 227,391 | 718 | 1465 | 1125 | 1049 | 1268 | 2243 |
1821 | 13,614 | 687 | 257 | 395 | 151 | 0 | |
1575 | 355 | 14,496 | 128 | 150 | 360 | 1 | |
2547 | 533 | 22 | 13,958 | 44 | 497 | 255 | |
1138 | 44 | 5 | 284 | 15,439 | 570 | 1400 | |
1503 | 2 | 302 | 297 | 541 | 16,297 | 563 | |
1340 | 33 | 86 | 513 | 1119 | 235 | 31,184 | |
RNN | 226,796 | 1127 | 1020 | 1378 | 1134 | 1115 | 2689 |
1756 | 13,133 | 1229 | 261 | 124 | 354 | 68 | |
1742 | 1363 | 13,273 | 182 | 98 | 407 | 0 | |
3126 | 1150 | 183 | 12,324 | 498 | 392 | 183 | |
1435 | 30 | 57 | 412 | 13,800 | 792 | 2354 | |
1953 | 0 | 454 | 272 | 1136 | 14,966 | 724 | |
2000 | 23 | 28 | 455 | 1133 | 318 | 30,553 | |
Bi RNN | 229,210 | 866 | 1252 | 789 | 891 | 1039 | 1212 |
1836 | 14,083 | 549 | 248 | 10 | 199 | 0 | |
1209 | 356 | 15,110 | 7 | 122 | 261 | 0 | |
1351 | 506 | 0 | 15,086 | 273 | 357 | 283 | |
1022 | 5 | 24 | 269 | 16,529 | 235 | 796 | |
1398 | 91 | 277 | 284 | 343 | 16,898 | 214 | |
1166 | 15 | 6 | 249 | 496 | 311 | 32,267 | |
Bi LSTM | 228,426 | 1215 | 1461 | 1152 | 832 | 1004 | 1169 |
1028 | 14,765 | 487 | 147 | 431 | 67 | 0 | |
785 | 450 | 15,430 | 17 | 286 | 97 | 0 | |
1148 | 528 | 0 | 15,559 | 153 | 333 | 135 | |
1132 | 0 | 22 | 227 | 16,233 | 230 | 1036 | |
1253 | 0 | 210 | 315 | 116 | 17,391 | 220 | |
996 | 18 | 49 | 671 | 359 | 193 | 32,224 | |
Bi GRU | 229,067 | 981 | 1089 | 984 | 917 | 944 | 12,77 |
1135 | 14,765 | 515 | 164 | 273 | 73 | 0 | |
981 | 353 | 15,375 | 11 | 150 | 195 | 0 | |
1243 | 386 | 0 | 15,551 | 166 | 334 | 176 | |
1143 | 0 | 0 | 216 | 16,707 | 207 | 607 | |
1282 | 13 | 300 | 338 | 120 | 17,257 | 195 | |
1049 | 10 | 0 | 163 | 332 | 141 | 32,815 | |
CNN 5 | 229,481 | 722 | 881 | 771 | 705 | 824 | 1875 |
1331 | 12,697 | 1515 | 350 | 434 | 572 | 26 | |
1540 | 1152 | 13,124 | 499 | 501 | 246 | 3 | |
2198 | 278 | 159 | 13,191 | 973 | 650 | 407 | |
1143 | 89 | 223 | 859 | 14,233 | 924 | 1409 | |
1968 | 480 | 446 | 345 | 748 | 14,927 | 591 | |
1405 | 213 | 57 | 399 | 682 | 247 | 31,507 | |
CNN 10 | 23,0265 | 863 | 851 | 804 | 686 | 738 | 1052 |
1269 | 14,112 | 603 | 237 | 413 | 240 | 51 | |
1533 | 389 | 14,496 | 143 | 306 | 188 | 10 | |
1319 | 329 | 40 | 15,132 | 459 | 423 | 154 | |
1140 | 63 | 167 | 327 | 16,367 | 340 | 476 | |
1360 | 163 | 581 | 262 | 328 | 16,603 | 208 | |
1136 | 86 | 107 | 373 | 569 | 236 | 32,003 | |
CNN 20 | 23,1035 | 743 | 667 | 728 | 663 | 651 | 772 |
1339 | 14,937 | 381 | 156 | 62 | 47 | 3 | |
1665 | 391 | 14,636 | 10 | 184 | 170 | 9 | |
1310 | 244 | 8 | 15,490 | 201 | 412 | 191 | |
1128 | 16 | 67 | 203 | 16,805 | 164 | 497 | |
1390 | 85 | 316 | 323 | 165 | 17,012 | 214 | |
1183 | 247 | 33 | 206 | 643 | 154 | 32,044 | |
CNN 40 | 230,854 | 795 | 707 | 764 | 651 | 652 | 836 |
1305 | 15,130 | 354 | 95 | 5 | 36 | 0 | |
1400 | 318 | 15,237 | 0 | 4 | 106 | 0 | |
1532 | 232 | 8 | 15,412 | 170 | 362 | 140 | |
1434 | 56 | 84 | 218 | 16,262 | 294 | 532 | |
1314 | 86 | 321 | 307 | 139 | 17,152 | 186 | |
1215 | 62 | 88 | 212 | 678 | 213 | 32,042 | |
[25] | 228,873 | 802 | 986 | 977 | 1403 | 775 | 1443 |
1860 | 13,624 | 477 | 332 | 281 | 293 | 58 | |
2094 | 459 | 13,767 | 39 | 476 | 218 | 12 | |
1518 | 424 | 0 | 14,983 | 265 | 456 | 210 | |
934 | 26 | 28 | 340 | 16,130 | 354 | 1068 | |
1493 | 100 | 348 | 545 | 188 | 16,638 | 193 | |
1038 | 33 | 0 | 256 | 1042 | 230 | 31,911 | |
[26] | 22,7453 | 1217 | 1178 | 1414 | 1079 | 1500 | 1418 |
1552 | 14,358 | 339 | 315 | 68 | 258 | 35 | |
1482 | 244 | 14,886 | 66 | 56 | 311 | 20 | |
1822 | 696 | 34 | 13,774 | 492 | 365 | 673 | |
1566 | 178 | 361 | 873 | 13,454 | 1443 | 1005 | |
1808 | 113 | 812 | 331 | 614 | 15,497 | 330 | |
2061 | 350 | 359 | 750 | 1231 | 1039 | 28,720 | |
[27] | 188,898 | 4613 | 4455 | 989 | 4807 | 1133 | 30,364 |
1888 | 11,169 | 253 | 510 | 107 | 232 | 2766 | |
2505 | 640 | 9579 | 171 | 261 | 1062 | 2847 | |
1794 | 1587 | 174 | 6568 | 2646 | 557 | 4530 | |
1417 | 34 | 68 | 1455 | 9473 | 1634 | 4799 | |
1919 | 407 | 1257 | 861 | 2766 | 6942 | 5353 | |
2693 | 356 | 676 | 4644 | 3468 | 3382 | 19,291 | |
[28] | 229,161 | 1114 | 411 | 904 | 1039 | 583 | 2047 |
2984 | 10,237 | 286 | 876 | 83 | 107 | 2352 | |
3744 | 2132 | 4654 | 235 | 1731 | 2027 | 2542 | |
5394 | 646 | 214 | 7420 | 741 | 630 | 2811 | |
1436 | 193 | 159 | 331 | 13,169 | 374 | 3218 | |
5113 | 163 | 301 | 432 | 1511 | 8662 | 3323 | |
2198 | 639 | 105 | 184 | 681 | 113 | 30,590 | |
[29] | 232,803 | 249 | 208 | 543 | 505 | 212 | 739 |
3652 | 12,728 | 219 | 289 | 0 | 0 | 37 | |
3520 | 308 | 13,131 | 1 | 0 | 64 | 41 | |
2381 | 116 | 0 | 14,294 | 238 | 316 | 511 | |
2056 | 19 | 110 | 115 | 14,714 | 233 | 1633 | |
3695 | 0 | 217 | 343 | 194 | 14,494 | 562 | |
1918 | 0 | 10 | 128 | 69 | 93 | 32,292 | |
Proposed | 22,9838 | 945 | 948 | 884 | 993 | 757 | 956 |
700 | 15,752 | 277 | 204 | 0 | 0 | 0 | |
620 | 451 | 15,821 | 22 | 0 | 148 | 0 | |
819 | 177 | 0 | 15,924 | 204 | 405 | 240 | |
712 | 0 | 0 | 96 | 17,566 | 154 | 352 | |
958 | 0 | 196 | 354 | 161 | 17,651 | 185 | |
1030 | 0 | 0 | 93 | 317 | 176 | 32,914 |
Model | GRU | LSTM | RNN | Bi RNN | Bi LSTM | Bi GRU | CNN 5 | CNN 10 |
---|---|---|---|---|---|---|---|---|
Size of model (MB) | 0.198 | 0.263 | 0.07 | 0.191 | 0.732 | 0.552 | 0.139 | 0.272 |
Number of parameters | 51607 | 68487 | 17847 | 49255 | 191239 | 143911 | 36031 | 709911 |
Model | CNN 20 | CNN 40 | [25] | [26] | [27] | [28] | [29] | Proposed |
Size of model (MB) | 0.538 | 1.07 | 0.835 | 0.889 | 0.224 | 0.162 | 0.964 | 13.063 |
Number of parameters | 140671 | 280191 | 217863 | 232839 | 58663 | 41975 | 251279 | 3416583 |
References
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM Comput. Surv. 2021, 54, 1–40. [Google Scholar] [CrossRef]
- Sun, Z.; Ke, Q.; Rahmani, H.; Bennamoun, M.; Wang, G.; Liu, J. Human action recognition from various data modalities: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3200–3225. [Google Scholar] [CrossRef] [PubMed]
- Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey. IEEE Access 2020, 8, 210816–210836. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, R.; Mostafa, R.; Hadhood, M. Human activity recognition using wearable sensors: Review, challenges, evaluation benchmark. In Proceedings of the International Workshop on Deep Learning for Human Activity Recognition, Kyoto, Japan, 8 January 2021; pp. 1–15. [Google Scholar]
- Uslu, G.; Baydere, S. A Segmentation Scheme for Knowledge Discovery in Human Activity Spotting. IEEE Trans. Cybern. 2022, 52, 5668–5681. [Google Scholar] [CrossRef] [PubMed]
- Rueda, F.M.; Grzeszick, R.; Fink, G.A.; Feldhorst, S.; Hompel, M.T. Convolutional neural networks for human activity recognition using body-worn sensors. Informatics 2018, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.T.; Tröster, G.; Millán, J.d.R.; Roggen, D. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033–2042. [Google Scholar] [CrossRef] [Green Version]
- Reiss, A.; Stricker, D. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the 2012 16th International Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; IEEE: Piscataway, NJ, USA, 2021; pp. 108–109. [Google Scholar]
- Grzeszick, R.; Lenk, J.M.; Rueda, F.M.; Fink, G.A.; Feldhorst, S.; Ten Hompel, M. Deep neural network based human activity recognition for the order picking process. In Proceedings of the 4th international Workshop on Sensor-Based Activity Recognition and Interaction, Rostock, Germany, 21–22 September 2017; pp. 1–6. [Google Scholar]
- Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional neural networks for human activity recognition using mobile sensors. In Proceedings of the 6th International Conference on Mobile Computing, Applications and Services, Austin, TX, USA, 6–7 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 197–205. [Google Scholar]
- Stiefmeier, T.; Roggen, D.; Ogris, G.; Lukowicz, P.; Tröster, G. Wearable activity tracking in car manufacturing. IEEE Pervasive Comput. 2008, 7, 42–50. [Google Scholar] [CrossRef]
- Lockhart, J.W.; Weiss, G.M.; Xue, J.C.; Gallagher, S.T.; Grosner, A.B.; Pulickal, T.T. Design considerations for the WISDM smart phone-based sensor mining architecture. In Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data, San Diego, CA, USA, 21 August 2011; pp. 25–33. [Google Scholar]
- Cho, H.; Yoon, S.M. Divide and conquer-based 1D CNN human activity recognition using test data sharpening. Sensors 2018, 18, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A public domain dataset for human activity recognition using smartphones. In Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013; pp. 437–442. [Google Scholar]
- Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv 2016, arXiv:1604.08880. [Google Scholar]
- Bachlin, M.; Roggen, D.; Troster, G.; Plotnik, M.; Inbar, N.; Meidan, I.; Herman, T.; Brozgol, M.; Shaviv, E.; Giladi, N.; et al. Potentials of Enhanced Context Awareness in Wearable Assistants for Parkinson’s Disease Patients with the Freezing of Gait Syndrome. In Proceedings of the 2009 International Symposium on Wearable Computers, Linz, Austria, 4–7 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 123–130. [Google Scholar] [CrossRef]
- Pienaar, S.W.; Malekian, R. Human activity recognition using LSTM-RNN deep neural network architecture. In Proceedings of the 2019 IEEE 2nd Wireless Africa Conference (WAC), Pretoria, South Africa, 18–20 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 2011, 12, 74–82. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, R.; Chevalier, G.; Xu, X.; Zhang, Z. Deep residual bidir-LSTM for human activity recognition using wearable sensors. Math. Probl. Eng. 2018, 2018, 7316954. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Twomey, N.; Diethe, T.; Fafoutis, X.; Elsts, A.; McConville, R.; Flach, P.; Craddock, I. A comprehensive study of activity recognition using accelerometers. Informatics 2018, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Malali, A.; Hiriyannaiah, S.; Siddesh, G.; Srinivasa, K.; Sanjay, N. Supervised ECG wave segmentation using convolutional LSTM. ICT Express 2020, 6, 166–169. [Google Scholar] [CrossRef]
- Matias, P.; Folgado, D.; Gamboa, H.; Carreiro, A. Time Series Segmentation Using Neural Networks with Cross-Domain Transfer Learning. Electronics 2021, 10, 1805. [Google Scholar] [CrossRef]
- Sereda, I.; Alekseev, S.; Koneva, A.; Kataev, R.; Osipov, G. ECG segmentation by neural networks: Errors and correction. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Moskalenko, V.; Zolotykh, N.; Osipov, G. Deep learning for ECG segmentation. In Proceedings of the International Conference on Neuroinformatics, Dolgoprudny, Russia, 7–11 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 246–254. [Google Scholar]
- Liang, X.; Li, L.; Liu, Y.; Chen, D.; Wang, X.; Hu, S.; Wang, J.; Zhang, H.; Sun, C.; Liu, C. ECG_SegNet: An ECG delineation model based on the encoder-decoder structure. Comput. Biol. Med. 2022, 145, 105445. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
Author | Dataset | Window Size (s) | Sliding Window (%) | Accuracy (%) | Model |
---|---|---|---|---|---|
[7] | [8] | 0.7 | 50 | 92.22 | 1D-CNN |
[9] | 3 | 78 | 93.68 | 1D-CNN | |
[10] | 1 | 99 | 70.80 | 1D-CNN | |
[11] | [8] | 64 | 50 | 76.83 | 1D-CNN |
[12] | 64 | 50 | 88.19 | 1D-CNN | |
[13] | 64 | 50 | 96.88 | 1D-CNN | |
[14] | [8] | 500 | 50 | 94.2 | 1D-CNN |
[15] | 500 | 50 | 97.62 | 1D-CNN | |
[16] | [8] | 1 | 50 | 0.929 (F1-Score) | CNN + LSTM |
[9] | 5.12 | 78 | 0.745 (F1-Score) | CNN + LSTM | |
[17] | 1 | 50 | 0.76 (F1-Score) | CNN + LSTM | |
[18] | [19] | 10 | 90 | 94 | LSTM |
[20] | [8] | 2.56 | 50 | 0.905 (F1-Score) | LSTM |
[15] | 2.56 | 50 | 0.935 (F1-Score) | LSTM |
ID | a | b | c | d | e | f | g | h |
---|---|---|---|---|---|---|---|---|
get-up | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
laying | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
stand-up | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
picking | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
sitting | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
walking | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
walking—picking | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
walking—sitting | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
stand-up—walking | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
sitting—laying | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
get-up—stand-up | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
picking—walking | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
get-up—laying | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
laying—get-up | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
stand-up—picking | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
stand-up—sitting | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
picking—sitting | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
sitting—stand-up | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Background | Laying | Picking | Get-Up | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score | |
GRU | 0.960 | 0.964 | 0.962 | 0.815 | 0.864 | 0.839 | 0.808 | 0.838 | 0.822 | 0.880 | 0.811 | 0.844 |
LSTM | 0.958 | 0.967 | 0.962 | 0.850 | 0.849 | 0.850 | 0.824 | 0.818 | 0.821 | 0.890 | 0.804 | 0.845 |
RNN | 0.950 | 0.964 | 0.957 | 0.817 | 0.778 | 0.797 | 0.770 | 0.731 | 0.750 | 0.781 | 0.776 | 0.778 |
Bi RNN | 0.966 | 0.974 | 0.970 | 0.878 | 0.885 | 0.881 | 0.886 | 0.875 | 0.881 | 0.884 | 0.832 | 0.857 |
Bi LSTM | 0.973 | 0.971 | 0.972 | 0.874 | 0.904 | 0.889 | 0.882 | 0.860 | 0.871 | 0.870 | 0.872 | 0.871 |
Bi GRU | 0.971 | 0.974 | 0.972 | 0.890 | 0.901 | 0.895 | 0.895 | 0.885 | 0.890 | 0.894 | 0.872 | 0.883 |
CNN 5 | 0.960 | 0.975 | 0.968 | 0.800 | 0.769 | 0.784 | 0.779 | 0.754 | 0.766 | 0.812 | 0.750 | 0.780 |
CNN 10 | 0.967 | 0.979 | 0.973 | 0.861 | 0.849 | 0.855 | 0.856 | 0.867 | 0.861 | 0.882 | 0.834 | 0.857 |
CNN 20 | 0.966 | 0.982 | 0.974 | 0.909 | 0.858 | 0.882 | 0.898 | 0.890 | 0.894 | 0.896 | 0.883 | 0.889 |
CNN 40 | 0.966 | 0.981 | 0.973 | 0.907 | 0.893 | 0.900 | 0.908 | 0.861 | 0.884 | 0.907 | 0.894 | 0.900 |
[25] | 0.962 | 0.973 | 0.968 | 0.882 | 0.807 | 0.843 | 0.815 | 0.854 | 0.834 | 0.881 | 0.805 | 0.841 |
[26] | 0.957 | 0.967 | 0.962 | 0.828 | 0.872 | 0.85 | 0.792 | 0.713 | 0.75 | 0.837 | 0.848 | 0.843 |
[27] | 0.939 | 0.803 | 0.866 | 0.582 | 0.561 | 0.571 | 0.403 | 0.502 | 0.447 | 0.594 | 0.66 | 0.625 |
[28] | 0.917 | 0.974 | 0.944 | 0.759 | 0.273 | 0.401 | 0.695 | 0.698 | 0.696 | 0.677 | 0.605 | 0.639 |
[29] | 0.931 | 0.99 | 0.959 | 0.945 | 0.769 | 0.848 | 0.936 | 0.779 | 0.851 | 0.948 | 0.752 | 0.839 |
Proposed | 0.979 | 0.977 | 0.978 | 0.918 | 0.927 | 0.922 | 0.913 | 0.930 | 0.922 | 0.909 | 0.930 | 0.920 |
Stand-Up | Siting | Walking | ||||||||||
Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score | ||||
GRU | 0.871 | 0.763 | 0.813 | 0.873 | 0.855 | 0.864 | 0.884 | 0.912 | 0.898 | |||
LSTM | 0.843 | 0.782 | 0.811 | 0.841 | 0.836 | 0.838 | 0.875 | 0.904 | 0.889 | |||
RNN | 0.806 | 0.690 | 0.744 | 0.816 | 0.767 | 0.791 | 0.835 | 0.885 | 0.860 | |||
Bi RNN | 0.891 | 0.845 | 0.867 | 0.876 | 0.866 | 0.871 | 0.928 | 0.935 | 0.931 | |||
Bi LSTM | 0.860 | 0.871 | 0.866 | 0.900 | 0.892 | 0.896 | 0.926 | 0.934 | 0.930 | |||
Bi GRU | 0.892 | 0.871 | 0.882 | 0.901 | 0.885 | 0.893 | 0.936 | 0.951 | 0.943 | |||
CNN 5 | 0.804 | 0.739 | 0.770 | 0.812 | 0.765 | 0.788 | 0.880 | 0.913 | 0.896 | |||
CNN 10 | 0.876 | 0.847 | 0.861 | 0.885 | 0.851 | 0.868 | 0.943 | 0.927 | 0.935 | |||
CNN 20 | 0.905 | 0.867 | 0.886 | 0.914 | 0.872 | 0.893 | 0.950 | 0.929 | 0.939 | |||
CNN 40 | 0.906 | 0.863 | 0.884 | 0.912 | 0.879 | 0.895 | 0.950 | 0.928 | 0.939 | |||
[25] | 0.858 | 0.839 | 0.848 | 0.877 | 0.853 | 0.865 | 0.914 | 0.925 | 0.92 | |||
[26] | 0.786 | 0.771 | 0.779 | 0.759 | 0.795 | 0.776 | 0.892 | 0.832 | 0.861 | |||
[27] | 0.432 | 0.368 | 0.397 | 0.465 | 0.356 | 0.403 | 0.276 | 0.559 | 0.369 | |||
[28] | 0.715 | 0.416 | 0.526 | 0.693 | 0.444 | 0.541 | 0.652 | 0.886 | 0.752 | |||
[29] | 0.91 | 0.801 | 0.852 | 0.94 | 0.743 | 0.83 | 0.902 | 0.936 | 0.918 | |||
Proposed | 0.906 | 0.896 | 0.901 | 0.915 | 0.905 | 0.910 | 0.950 | 0.953 | 0.952 |
Model | GRU | LSTM | RNN | Bi RNN | Bi LSTM | Bi GRU | CNN 5 | CNN 10 | CNN 20 | CNN 40 | Proposed |
---|---|---|---|---|---|---|---|---|---|---|---|
SW 10-5 | 0.725 | 0.734 | 0.685 | 0.734 | 0.74 | 0.747 | 0.737 | 0.741 | 0.766 | 0.723 | 0.727 |
SW 20-10 | 0.631 | 0.657 | 0.65 | 0.753 | 0.725 | 0.717 | 0.672 | 0.701 | 0.781 | 0.718 | 0.71 |
SW 40-20 | 0.639 | 0.671 | 0.65 | 0.678 | 0.779 | 0.795 | 0.746 | 0.799 | 0.817 | 0.797 | 0.799 |
CEF | 0.863 | 0.858 | 0.809 | 0.893 | 0.898 | 0.907 | 0.82 | 0.887 | 0.909 | 0.911 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-h.; Lee, D.-W.; Kim, M.S. A Deep Learning-Based Semantic Segmentation Model Using MCNN and Attention Layer for Human Activity Recognition. Sensors 2023, 23, 2278. https://doi.org/10.3390/s23042278
Lee S-h, Lee D-W, Kim MS. A Deep Learning-Based Semantic Segmentation Model Using MCNN and Attention Layer for Human Activity Recognition. Sensors. 2023; 23(4):2278. https://doi.org/10.3390/s23042278
Chicago/Turabian StyleLee, Sang-hyub, Deok-Won Lee, and Mun Sang Kim. 2023. "A Deep Learning-Based Semantic Segmentation Model Using MCNN and Attention Layer for Human Activity Recognition" Sensors 23, no. 4: 2278. https://doi.org/10.3390/s23042278