Fractal Properties of Heart Rate Dynamics: A New Biomarker for Anesthesia—Biphasic Changes in General Anesthesia and Decrease in Spinal Anesthesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Protocol
2.2. General Patient Management
2.3. Induction and Maintenance of Intravenous Propofol Anesthesia
2.4. Induction and Maintenance of Desflurane Anesthesia
2.5. Spinal Anesthesia
2.6. Data Collection
2.7. Time and Frequency Domain Analysis
2.8. Detrended Fluctuation Analysis (DFA)
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Subjects
3.2. HR Variability and DFAα1 between Baseline and after Anesthesia
3.3. Correlation between α1 and Other HR Variability Variables
3.4. The ROC Curve
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajat, Z.; Ahmad, N.; Andrzejowski, J. The role and limitations of EEG-based depth of anaesthesia monitoring in theatres and intensive care. Anaesthesia 2017, 72 (Suppl. S1), 38–47. [Google Scholar] [CrossRef] [Green Version]
- Akselrod, S.; Gordon, D.; Ubel, F.A.; Shannon, D.C.; Berger, A.C.; Cohen, R.J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science 1981, 213, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Jean, W.H.; Sutikno, P.; Fan, S.Z.; Abbod, M.F.; Shieh, J.S. Comparison of Deep Learning Algorithms in Predicting Expert Assessments of Pain Scores during Surgical Operations Using Analgesia Nociception Index. Sensors 2022, 22, 5496. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Makikallio, T.H.; Peng, C.K.; Goldberger, A.L.; Hintze, U.; Moller, M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 2000, 101, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penttila, J.; Helminen, A.; Jartti, T.; Kuusela, T.; Huikuri, H.V.; Tulppo, M.P.; Scheinin, H. Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics. Auton. Autacoid Pharmacol. 2003, 23, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Scheinin, H.; Helminen, A.; Huhtala, S.; Gronroos, P.; Bosch, J.A.; Kuusela, T.; Kanto, J.; Kaila, T. Spectral analysis of heart rate variability as a quantitative measure of parasympatholytic effect-integrated pharmacokinetics and pharmacodynamics of three anticholinergic drugs. Ther. Drug Monit. 1999, 21, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Maenpaa, M.; Laitio, T.; Kuusela, T.; Penttila, J.; Kaisti, K.; Aalto, S.; Hinkka-Yli-Salomaki, S.; Scheinin, H. Delta entropy of heart rate variability along with deepening anesthesia. Anesth. Analg. 2011, 112, 587–592. [Google Scholar] [CrossRef]
- Robinson, B.J.; Ebert, T.J.; O’Brien, T.J.; Colinco, M.D.; Muzi, M. Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology 1997, 86, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.J.; Muzi, M.; Berens, R.; Goff, D.; Kampine, J.P. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 1992, 76, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, N.; Hirata, N.; Kurosawa, S.; Nakayama, M.; Namiki, A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology 2003, 98, 34–40. [Google Scholar] [CrossRef]
- Galletly, D.C.; Buckley, D.H.; Robinson, B.J.; Corfiatis, T. Heart rate variability during propofol anaesthesia. Br. J. Anaesth. 1994, 72, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.J.; Muzi, M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 1993, 79, 444–453. [Google Scholar] [CrossRef]
- Weiskopf, R.B.; Moore, M.A.; Eger, E.I., 2nd; Noorani, M.; McKay, L.; Chortkoff, B.; Hart, P.S.; Damask, M. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology 1994, 80, 1035–1045. [Google Scholar] [CrossRef]
- Ebert, T.J.; Muzi, M.; Lopatka, C.W. Neurocirculatory responses to sevoflurane in humans. A comparison to desflurane. Anesthesiology 1995, 83, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Gratadour, P.; Viale, J.P.; Parlow, J.; Sagnard, P.; Counioux, H.; Bagou, G.; Annat, G.; Hughson, R.; Quintin, L. Sympathovagal effects of spinal anesthesia assessed by the spontaneous cardiac baroreflex. Anesthesiology 1997, 87, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, M.; Tanaka, N.; Takasaki, M. Power spectral analysis of heart rate variability after spinal anaesthesia. Br. J. Anaesth. 1993, 71, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, L.A.; Frank, S.M.; Shir, Y.; Estafanous, M.; Kelly, S.; Raja, S.N. Cardiac sympathovagal balance and peripheral sympathetic vasoconstriction: Epidural versus general anesthesia. Anesth. Analg. 1994, 79, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Braun, C.; Kowallik, P.; Freking, A.; Hadeler, D.; Kniffki, K.D.; Meesmann, M. Demonstration of nonlinear components in heart rate variability of healthy persons. Am. J. Physiol. 1998, 275, H1577–H1584. [Google Scholar] [CrossRef] [PubMed]
- Wessel, N.; Malberg, H.; Bauernschmitt, R.; Kurths, J. Nonlinear Methods Of Cardiovascular Physics and Their Clinical Applicability. Int. J. Bifurc. Chaos 2007, 17, 3325–3371. [Google Scholar] [CrossRef] [Green Version]
- Huikuri, H.V.; Perkiomaki, J.S.; Maestri, R.; Pinna, G.D. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 1223–1238. [Google Scholar] [CrossRef]
- Storella, R.J.; Kandell, R.B.; Horrow, J.C.; Ackerman, T.S.; Polansky, M.; Zietz, S. Nonlinear measures of heart rate variability after fentanyl-based induction of anesthesia. Anesth. Analg. 1995, 81, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.K.; Schmidt, G.; Yamamoto, Y. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015, 17, 1341–1353. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, N.; Peng, C.K.; Morin, R.; Goldberger, A.L.; Lipsitz, L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. 1996, 271, R1078–R1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger, A.L.; Amaral, L.A.; Hausdorff, J.M.; Ivanov, P.; Peng, C.K.; Stanley, H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. S1), 2466–2472. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.R.; Fan, S.Z.; Shieh, J.S. Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition. Med. Eng. Phys. 2009, 31, 92–100. [Google Scholar] [CrossRef]
- Mizobuchi, A.; Osawa, K.; Tanaka, M.; Yumoto, A.; Saito, H.; Fuke, S. Detrended fluctuation analysis can detect the impairment of heart rate regulation in patients with heart failure with preserved ejection fraction. J. Cardiol. 2021, 77, 72–78. [Google Scholar] [CrossRef]
- Ho, K.K.; Moody, G.B.; Peng, C.K.; Mietus, J.E.; Larson, M.G.; Levy, D.; Goldberger, A.L. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 1997, 96, 842–848. [Google Scholar] [CrossRef]
- Vikman, S.; Makikallio, T.H.; Yli-Mayry, S.; Pikkujamsa, S.; Koivisto, A.M.; Reinikainen, P.; Airaksinen, K.E.; Huikuri, H.V. Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 1999, 100, 2079–2084. [Google Scholar] [CrossRef] [Green Version]
- Makikallio, T.H.; Seppanen, T.; Airaksinen, K.E.; Koistinen, J.; Tulppo, M.P.; Peng, C.K.; Goldberger, A.L.; Huikuri, H.V. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am. J. Cardiol. 1997, 80, 779–783. [Google Scholar] [CrossRef]
- Makikallio, T.H.; Huikuri, H.V.; Makikallio, A.; Sourander, L.B.; Mitrani, R.D.; Castellanos, A.; Myerburg, R.J. Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J. Am. Coll. Cardiol. 2001, 37, 1395–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jospin, M.; Caminal, P.; Jensen, E.W.; Litvan, H.; Vallverdu, M.; Struys, M.M.; Vereecke, H.E.; Kaplan, D.T. Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans. Biomed. Eng. 2007, 54, 840–846. [Google Scholar] [CrossRef]
- Cui, X.; Tian, L.; Li, Z.; Ren, Z.; Zha, K.; Wei, X.; Peng, C.K. On the Variability of Heart Rate Variability-Evidence from Prospective Study of Healthy Young College Students. Entropy 2020, 22, 1302. [Google Scholar] [CrossRef]
- Kawakami, D.M.O.; Bonjorno-Junior, J.C.; da Silva Destro, T.R.; Biazon, T.; Garcia, N.M.; Bonjorno, F.; Borghi-Silva, A.; Mendes, R.G. Patterns of vascular response immediately after passive mobilization in patients with sepsis: An observational transversal study. Int. J. Cardiovasc. Imaging 2022, 38, 297–308. [Google Scholar] [CrossRef]
- Rogers, B.; Mourot, L.; Doucende, G.; Gronwald, T. Fractal correlation properties of heart rate variability as a biomarker of endurance exercise fatigue in ultramarathon runners. Physiol. Rep. 2021, 9, e14956. [Google Scholar] [CrossRef]
- Rawenwaaij-Arts, C.; Kallee, L.; Hopman, J. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Makikallio, T.H.; Ristimae, T.; Airaksinen, K.E.; Peng, C.K.; Goldberger, A.L.; Huikuri, H.V. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am. J. Cardiol. 1998, 81, 27–31. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, G.M.; Lee, D.R.; Lee, J.U. Factors related to paradoxical reactions during propofol-induced sedated endoscopy. Scand. J. Gastroenterol. 2019, 54, 371–376. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, H.G.; Kim, W.M.; Jeong, C.W.; Lee, S.H.; Yoon, M.H.; Choi, J.I. Increase of paradoxical excitement response during propofol-induced sedation in hazardous and harmful alcohol drinkers. Br. J. Anaesth. 2011, 107, 930–933. [Google Scholar] [CrossRef] [Green Version]
- Kuizenga, K.; Wierda, J.M.; Kalkman, C.J. Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br. J. Anaesth. 2001, 86, 354–360. [Google Scholar] [CrossRef]
- Zhao, S.; Han, L.; Zhou, R.; Huang, S.; Wang, Y.; Xu, F.; Shu, S.; Xia, L.; Chen, X. Electroencephalogram Signatures of Agitation Induced by Sevoflurane and Its Association With Genetic Polymorphisms. Front. Med. 2021, 8, 678185. [Google Scholar] [CrossRef]
- Jordan, D.; Stockmanns, G.; Kochs, E.F.; Pilge, S.; Schneider, G. Electroencephalographic order pattern analysis for the separation of consciousness and unconsciousness: An analysis of approximate entropy, permutation entropy, recurrence rate, and phase coupling of order recurrence plots. Anesthesiology 2008, 109, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Deutschman, C.S.; Harris, A.P.; Fleisher, L.A. Changes in heart rate variability under propofol anesthesia: A possible explanation for propofol-induced bradycardia. Anesth. Analg. 1994, 79, 373–377. [Google Scholar] [CrossRef]
- Scheffer, G.J.; Ten Voorde, B.J.; Karemaker, J.M.; Ros, H.H.; de Lange, J.J. Effects of thiopentone, etomidate and propofol on beat-to-beat cardiovascular signals in man. Anaesthesia 1993, 48, 849–855. [Google Scholar] [CrossRef]
- Tulppo, M.P.; Kiviniemi, A.M.; Hautala, A.J.; Kallio, M.; Seppanen, T.; Makikallio, T.H.; Huikuri, H.V. Physiological background of the loss of fractal heart rate dynamics. Circulation 2005, 112, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Tulppo, M.P.; Hughson, R.L.; Makikallio, T.H.; Airaksinen, K.E.; Seppanen, T.; Huikuri, H.V. Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am. J. Physiol.-Heart Circ. Physiol. 2001, 280, H1081–H1087. [Google Scholar] [CrossRef]
- Hautala, A.J.; Makikallio, T.H.; Seppanen, T.; Huikuri, H.V.; Tulppo, M.P. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin. Physiol. Funct. Imaging 2003, 23, 215–223. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kurokawa, S.; Shibata, Y.; Asakura, Y.; Harado, M.; Komatsu, T. Sympathovagal effects of spinal anaesthesia with intrathecal or intravenous fentanyl assessed by heart rate variability. Acta Anaesthesiol. Scand. 2009, 53, 476–482. [Google Scholar] [CrossRef]
- Kararmaz, A.; Kaya, S.; Turhanoglu, S.; Ozyilmaz, M.A. Which administration route of fentanyl better enhances the spread of spinal anaesthesia: Intravenous, intrathecal or both? Acta Anaesthesiol. Scand. 2003, 47, 1096–1100. [Google Scholar] [CrossRef]
- Patterson, L.; Avery, N.; Chan, P.; Parlow, J.L. The addition of fentanyl does not alter the extent of spread of intrathecal isobaric bupivacaine in clinical practice. Can. J. Anaesth. 2001, 48, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Kushida, A.; Murao, K.; Kimoto, M.; Nakao, S.; Shingu, K. [Fentanyl shows different effects by administration routes on bispectral index during spinal anesthesia in patients undergoing cesarean section]. Masui. Jpn. J. Anesthesiol. 2006, 55, 1393–1397. [Google Scholar]
- Marucci, M.; Diele, C.; Bruno, F.; Fiore, T. Subarachnoid anaesthesia in caesarean delivery: Effects on alertness. Minerva Anestesiol. 2003, 69, 809–824. [Google Scholar] [PubMed]
- Perkiomaki, J.S.; Zareba, W.; Badilini, F.; Moss, A.J. Influence of atropine on fractal and complexity measures of heart rate variability. Ann. Noninvasive Electrocardiol. 2002, 7, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Willson, K.; Francis, D.P.; Wensel, R.; Coats, A.J.; Parker, K.H. Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability. Physiol. Meas. 2002, 23, 385–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.G.; Yoo, C.S.; Yi, S.H.; Bae, J.H.; Kim, Y.J.; Park, J.S.; Hong, G.R. Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation. Circ. J. 2006, 70, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, J.A.; Bishop, B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am. J. Physiol. Circ. Physiol. 1981, 241, H620–H629. [Google Scholar] [CrossRef] [Green Version]
- Yeragani, V.K.; Sobolewski, E.; Jampala, V.C.; Kay, J.; Yeragani, S.; Igel, G. Fractal dimension and approximate entropy of heart period and heart rate: Awake versus sleep differences and methodological issues. Clin. Sci. 1998, 95, 295–301. [Google Scholar] [CrossRef]
- Pollock, J.E.; Neal, J.M.; Liu, S.S.; Burkhead, D.; Polissar, N. Sedation during spinal anesthesia. Anesthesiology 2000, 93, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Gentili, M.; Huu, P.C.; Enel, D.; Hollande, J.; Bonnet, F. Sedation depends on the level of sensory block induced by spinal anaesthesia. Br. J. Anaesth. 1998, 81, 970–971. [Google Scholar] [CrossRef]
Group LM (N = 20) | Group LMf (N = 20) | Group P (N = 20) | Group D (N = 18) | |
---|---|---|---|---|
Age, yrs | 41 ± 7 | 42 ± 8 | 42 ± 11 | 38 ± 12 |
Height, cm | 164 ± 8 | 165 ± 8 | 159 ± 9 | 156 ± 8 |
Weight, kg | 67 ± 10 | 66 ± 15 | 58 ± 11 | 53 ± 10 |
Sex, male/female | 9/11 | 10/10 | 11/9 | 9/9 |
Block height: 30 min ater SA | T7 ± 2 | T6 ± 3 | - | - |
BP (systolic)mmHg Baseline | 130 ± 18 | 133 ± 15 | 123 ± 14 | 123 ± 16 |
30 min after SA or AAI < 35 | 120 ± 9 * | 119 ± 15 * | 106 ± 13 * | 116 ± 9 * |
BP (diastolic)mmHg Baseline | 81 ± 9 | 80 ± 7 | 75 ± 9 | 77 ± 10 |
30 min after SA or AAI < 35 | 76 ± 9 * | 72 ± 7 * | 63 ± 8 * | 69 ± 9 |
Heart rate Baseline | 74 ± 13 | 72 ± 10 | 73 ± 11 | 76 ± 10 |
30 min after SA or AAI < 35 | 70 ± 12 | 65 ± 11 * | 75 ± 9 | 56 ± 9 * |
(a) Spinal Anesthesia | ||||||
Variable | Group LM | Group LMf | ||||
Baseline | 30 min after SA | Baseline | 30 min after SA | |||
SDNN, ms | 41.47 ± 22.25 | 50.26 ± 36.58 | 58.43 ± 33.34 | 44.24 ± 20.77 * | ||
RMSSD, ms | 25.89 ± 18.61 | 40.73 ± 45.05 | 34.23 ± 26.49 | 29.41 ± 14.01 | ||
TP, ms2/Hz | 1893.32 ± 2028.8 | 3597.4 ± 5888.4 | 3359.34 ± 3237.51 | 2116.05 ± 1916.81 | ||
LFP, ms2/Hz | 406.39 ± 407.40 | 843.68 ± 1119.11 | 727.41 ± 726.12 | 538.82 ± 647.51 | ||
HFP, ms2/Hz | 290.73 ± 480.77 | 1418.3 ± 3331.6 * | 444.99 ± 567.92 | 396.28 ± 435.91 | ||
nLFP | 66.09 ± 11.94 | 55.92 ± 15.76 * | 65.19 ± 17.80 | 56.03 ± 13.52 ** | ||
nHFP | 33.91 ± 11.94 | 44.03 ± 15.76 * | 34.81 ± 17.80 | 43.97 ± 13.52 ** | ||
LF/HF ratio | 2.41 ± 1.46 | 1.52 ± 0.80 ** | 1.03 ± 0.07 | 0.95 ± 0.20 *** | ||
DFAα1 | 1.32 ± 0.25 | 0.98 ± 0.21 *** | 1.28 ± 0.17 | 0.80 ± 0.21 *** | ||
(b) General anesthesia | ||||||
Variable | Group P | Group D | ||||
Awake | 35 < AAI < 60 | AAI < 60 | Awake | 35 < AAI < 60 | AAI < 60 | |
SDNN, ms | 50.57 ± 22.20 | 53.05 ± 20.32 | 43.17 ± 20.29 | 45.22 ± 22.14 | 84.19 ± 27.02 ** | 63.94 ± 38.07 * |
RMSSD, ms | 30.52 ± 18.04 | 25.66 ± 14.90 | 24.26 ± 15.62 * | 28.23 ± 17.37 | 40.79 ± 24.12 | 30.27 ± 20.81 |
TP, ms2/Hz | 2511.51 ± 2286.57 | 2792.54 ± 2316.49 | 1676.45 ± 1647.79 | 2069.65 ± 2124.37 | 6318.92 ± 6019.69 ** | 3714.95 ± 4760.33 |
LFP, ms2/Hz | 486.17 ± 373.34 | 652.74 ± 664.81 | 268.63 ± 293.54 * | 480.40 ± 432.50 | 794.66 ± 1450.99 | 125.89 ± 139.98 ** |
HFP, ms2/Hz | 476.05 ± 575.26 | 277.58 ± 344.17 ** | 282.01 ± 439.50 | 434.20 ± 606.60 | 1022.46 ± 1185.62 | 500.33 ± 613.01 |
nLFP | 55.86 ± 16.75 | 62.51 ± 24.26 * | 58.49 ± 28.97 | 57.34 ± 17.86 | 38.11 ± 19.64 ** | 36.12 ± 27.66 ** |
nHFP | 44.14 ± 16.75 | 29.60 ± 16.72 * | 41.51 ± 28.96 | 42.66 ± 17.86 | 51.37 ± 20.35 | 63.81 ± 27.66 ** |
LF/HF ratio | 1.74 ± 1.50 | 3.68 ± 3.27 | 3.46 ± 3.76 | 1.90 ± 1.57 | 1.07 ± 1.03 * | 1.15 ± 1.66 * |
DFAα1 | 1.14 ± 0.21 | 1.26 ± 0.28 * | 0.94 ± 0.35 * | 1.10 ± 0.26 | 1.36 ± 0.25 *** | 0.7 ± 0.31 *** |
(a) Spinal Anesthesia | ||||||
Variable | Group LM | Group LMf | ||||
Baseline | 30 min after SA | Baseline | 30 min after SA | |||
DFAα1 | - | - | - | - | ||
SDNN | −0.3552 | −0.1239 | 0.0589 | 0.0052 | ||
RMSSD | −0.0910 | −0.1006 | 0.1257 | 0.1863 | ||
TP | −0.3399 | 0.1774 | 0.0749 | 0.1482 | ||
LFP | −0.1390 | −0.2553 | 0.0867 | 0.2559 | ||
HFP | 0.0325 | 0.5494 * | 0.1975 | −0.4815 | ||
nLFP | −0.0522 | −0.5134 * | −0.1992 | 0.4759 | ||
nHFP | 0.2895 | 0.4640 | 0.3009 | −0.2979 | ||
LF/Hf ratio | −0.1906 | −0.1101 | 0.1249 | 0.2952 | ||
(b) General anesthesia | ||||||
Variable | Group P | Group D | ||||
Awake | 35 < AAI < 60 | AAI < 60 | Awake | 35 < AAI < 60 | AAI < 60 | |
DFAα1 | - | - | - | - | - | - |
SDNN | −0.5132 * | −0.6323 * | −0.6005 * | −0.1023 | 0.1859 | −0.5837 |
RMSSD | −0.3072 | −0.2343 | −0.1986 | −0.0299 | 0.4139 | −0.4375 |
TP | −0.1589 | −0.0069 | −0.0510 | 0.0073 | 0.1309 | 0.1047 |
LFP | −0.4991 | −0.5600 * | −0.6626 * | −0.1595 | 0.3007 | −0.6005 |
HFP | 0.6678 * | 0.4197 | 0.6630 * | 0.2153 | −0.1232 | 0.4172 |
nLFP | −0.6610 * | −0.4100 | −0.6616 * | −0.2180 | −0.0865 | −0.4041 |
nHFP | 0.5499 * | 0.2995 | 0.3760 | 0.2881 | 0.0036 | 0.4661 |
LF/Hf ratio | −0.4214 | −0.4171 | −0.0876 | −0.0084 | 0.2088 | −0.4369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.-Y.; Shieh, J.-S.; Yeh, J.-R.; Fan, S.-Z. Fractal Properties of Heart Rate Dynamics: A New Biomarker for Anesthesia—Biphasic Changes in General Anesthesia and Decrease in Spinal Anesthesia. Sensors 2022, 22, 9258. https://doi.org/10.3390/s22239258
Lan J-Y, Shieh J-S, Yeh J-R, Fan S-Z. Fractal Properties of Heart Rate Dynamics: A New Biomarker for Anesthesia—Biphasic Changes in General Anesthesia and Decrease in Spinal Anesthesia. Sensors. 2022; 22(23):9258. https://doi.org/10.3390/s22239258
Chicago/Turabian StyleLan, Jheng-Yan, Jiann-Shing Shieh, Jia-Rong Yeh, and Shou-Zen Fan. 2022. "Fractal Properties of Heart Rate Dynamics: A New Biomarker for Anesthesia—Biphasic Changes in General Anesthesia and Decrease in Spinal Anesthesia" Sensors 22, no. 23: 9258. https://doi.org/10.3390/s22239258