Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing
Abstract
:1. Introduction
2. Principle and Characterization
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guha, B.; Allain, P.E.; Lemaitre, A.; Leo, G.; Favero, I. Force Sensing with an Optomechanical Self-Oscillator. Phys. Rev. Appl. 2020, 14, 024079. [Google Scholar] [CrossRef]
- Ricci, F.; Cuairan, M.T.; Conangla, G.P.; Schell, A.W.; Quidant, R. Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing. Nano Lett. 2019, 19, 6711–6715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.Y.; Chen, H.J. Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system. Chin. Phys. B 2020, 29, 107801. [Google Scholar] [CrossRef]
- Gruber, G.; Urgell, C.; Tavernarakis, A.; Stavrinadis, A.; Tepsic, S.; Magen, C.; Sangiao, S.; de Teresa, J.M.; Verlot, P.; Bachtold, A. Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators. Nano Lett. 2019, 19, 6987–6992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaikie, A.; Miller, D.; Aleman, B.J. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat. Commun. 2019, 10, 4726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolleman, R.J.; Houri, S.; Davidovikj, D.; Cartamil-Bueno, S.J.; Blanter, Y.M.; van der Zant, H.S.J.; Steeneken, P.G. Optomechanics for thermal characterization of suspended graphene. Phys. Rev. B 2017, 96, 165421. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493–2495. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Davidovikj, D.; Sajadi, B.; Siskins, M.; Alijani, F.; van der Zant, H.S.J.; Steeneken, P.G. Sealing Graphene Nanodrums. Nano Lett. 2019, 19, 5313–5318. [Google Scholar] [CrossRef] [Green Version]
- Barton, R.A.; Ilic, B.; van der Zande, A.M.; Whitney, W.S.; McEuen, P.L.; Parpia, J.M.; Craighead, H.G. High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators. Nano Lett. 2011, 11, 1232–1236. [Google Scholar] [CrossRef]
- Davidovikj, D.; Slim, J.J.; Cartamil-Bueno, S.J.; van der Zant, H.S.J.; Steeneken, P.G.; Venstra, W.J. Visualizing the Motion of Graphene Nanodrums. Nano Lett. 2016, 16, 2768–2773. [Google Scholar] [CrossRef]
- Singh, R.; Sarkar, A.; Guria, C.; Nicholl, R.J.T.; Chakraborty, S.; Bolotin, K.I.; Ghosh, S. Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator. Nano Lett. 2020, 20, 4659–4666. [Google Scholar] [CrossRef]
- Chen, C.Y.; Rosenblatt, S.; Bolotin, K.I.; Kalb, W.; Kim, P.; Kymissis, I.; Stormer, H.L.; Heinz, T.F.; Hone, J. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 2009, 4, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.C.; Yan, S.C.; Chen, J.H.; Cui, G.X.; Xu, F.; Lu, Y.Q. Miniature optical fiber current sensor based on a graphene membrane. Laser Photonics Rev. 2015, 9, 517–522. [Google Scholar] [CrossRef]
- Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, J.-l.; Zhu, Q.-s.; Liang, J.-f.; Guo, J.-q.; Wang, X.-d. Research progress in graphene based thermal conductivity materials. Cailiao Gongcheng-J. Mater. Eng. 2021, 49, 1–13. [Google Scholar] [CrossRef]
- Yoon, D.; Son, Y.W.; Cheong, H. Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Lett. 2011, 11, 3227–3231. [Google Scholar] [CrossRef] [Green Version]
- She, Y.M.; Li, C.; Lan, T.; Peng, X.B.; Liu, Q.W.; Fan, S.C. The Effect of Viscous Air Damping on an Optically Actuated Multilayer MoS2 Nanomechanical Resonator Using Fabry-Perot Interference. Nanomaterials 2016, 6, 162. [Google Scholar] [CrossRef] [Green Version]
- Shi, F.T.; Fan, S.C.; Li, C.; Li, Z.A. Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane. Nanomaterials 2019, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Oden, M.; Almer, J.; Hakansson, G. The effects of bias voltage and annealing on the microstructure and residual stress of arc-evaporated Cr-N coatings. Surf. Coat. Technol. 1999, 120, 272–276. [Google Scholar] [CrossRef]
- Li, H.; Zhang, P.; Li, G.; Lu, J.; Wu, Q.; Gu, Y. Stress measurement for nonstoichiometric ceria films based on Raman spectroscopy. J. Alloy. Compd. 2016, 682, 132–137. [Google Scholar] [CrossRef]
- Li, A.; Fei, Z.; Wang, C.; Song, X. Effects of thickness on the residual stress in Cu films. J. Hefei Polytech. Univ. Nat. Ed. 2004, 27, 1543–1546. [Google Scholar]
- Tada, H.; Kumpel, A.E.; Lathrop, R.E.; Slanina, J.B.; Nieva, P.; Zavracky, P.; Miaoulis, I.N.; Wong, P.Y. Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J. Appl. Phys. 2000, 87, 4189–4193. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Yang, R.; Wei, Y. The linear-dependence of adhesion strength and adhesion range on temperature in soft membranes. J. Mech. Phys. Solids 2019, 132, 103697. [Google Scholar] [CrossRef]
- Lu, Z.; Dunn, M.L. Van der Waals adhesion of graphene membranes. J. Appl. Phys. 2010, 107, 044301. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Lai, H.; Zou, M.; Xiao, H.; Chen, P.; Du, B.; Xiao, X.; He, J.; Wang, Y. Room-Temperature Fiber Tip Nanoscale Optomechanical Bolometer. ACS Photonics 2022, 9, 1586–1593. [Google Scholar] [CrossRef]
- Luo, J.; Liu, S.; Chen, P.; Lu, S.; Zhang, Q.; Chen, Y.; Du, B.; Tang, J.; He, J.; Liao, C.; et al. Fiber optic hydrogen sensor based on a Fabry-Perot interferometer with a fiber Bragg grating and a nanofilm. Lab Chip 2021, 21, 1752–1758. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, X.; Hou, Z.; Xiao, D.; Wu, X. Sputtering process research of multilayer metal thin film in MEMS devices. Transducer Microsyst. Technol. 2018, 37, 11–14. [Google Scholar]
- Ma, J. Miniature Fiber-Tip Fabry-Perot Interferometric Sensors for Pressure and Acoustic Detection; The Hong Kong Polytechnic University: Hong Kong, China, 2014. [Google Scholar]
- Li, C.; Liu, Q.W.; Peng, X.B.; Fan, S.C. Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm. Opt. Express 2015, 23, 27494–27502. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Lee, D.-J.; Park, S.-S. Estimation of Number of Graphene Layers Using Different Methods: A Focused Review. Materials 2021, 14, 4590. [Google Scholar] [CrossRef]
- Ma, J.; Jin, W.; Xuan, H.; Wang, C.; Ho, H.L. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film. Opt. Lett. 2014, 39, 4769–4772. [Google Scholar] [CrossRef]
- Li, L.; Feng, Z.Y.; Qiao, X.G.; Yang, H.Z.; Wang, R.H.; Su, D.; Wang, Y.P.; Bao, W.J.; Li, J.C.; Shao, Z.H.; et al. Ultrahigh Sensitive Temperature Sensor Based on Fabry-Perot Interference Assisted by a Graphene Diaphragm. IEEE Sens. J. 2015, 15, 505–509. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xiao, H.; Chen, Y.; Chen, P.; Yan, W.; Lin, Q.; Liu, B.; Xu, X.; Wang, Y.; Weng, X.; et al. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing. Sensors 2022, 22, 9068. https://doi.org/10.3390/s22239068
Liu S, Xiao H, Chen Y, Chen P, Yan W, Lin Q, Liu B, Xu X, Wang Y, Weng X, et al. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing. Sensors. 2022; 22(23):9068. https://doi.org/10.3390/s22239068
Chicago/Turabian StyleLiu, Shen, Hang Xiao, Yanping Chen, Peijing Chen, Wenqi Yan, Qiao Lin, Bonan Liu, Xizhen Xu, Yiping Wang, Xiaoyu Weng, and et al. 2022. "Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing" Sensors 22, no. 23: 9068. https://doi.org/10.3390/s22239068
APA StyleLiu, S., Xiao, H., Chen, Y., Chen, P., Yan, W., Lin, Q., Liu, B., Xu, X., Wang, Y., Weng, X., Liu, L., & Qu, J. (2022). Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing. Sensors, 22(23), 9068. https://doi.org/10.3390/s22239068