Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
Abstract
:1. Introduction
- A detailed analysis of the sensors required for artificial saffron cultivation and the factors motivating the selection of sensors in PA (precision agriculture).
- An experimental setup for the hydroponic cultivation of saffron with different sensors, devices, and controlled agronomical variables.
- The implementation of the system model and block diagram, consisting of sensors deployed on the basis of the study of the hydroponic growth of saffron.
- An evaluation of the designed system model using AquaCrop Simulator for a comparison between the different output parameters.
2. Related Work
2.1. Sensors Used in Precision Farming
Ref/ Year | Sensors Used | Medium for Cultivation | Crop Used for Research | Implementation | Application Domain |
---|---|---|---|---|---|
[20]/ 2022 | pH sensor Electrical conductivity sensor Water level sensor | Greenhouse | Tomatoes | Simulation and hardware-based | Monitoring |
[21]/ 2020 | DHT11 sensor LM35 soil temperature sensor pH sensor Soil moisture sensor MQ135 CO2 gas sensor | Artificial | Cucumber | Simulation and hardware-based | Controlling |
[22]/ 2020 | Thermal sensors | Natural | Onion | Hardware-based | Monitoring |
[23]/ 2016 | PIR sensors Heat sensor URD sensor | Natural | Staple Crops | Simulation-based | Monitoring |
[24]/ 2020 | Soil moisture sensor | Artificial | None | Simulation and hardware-based | Monitoring |
[25]/ 2020 | Soil moisture sensor Salinity sensor pH sensor Electromagnetic sensor | Natural | None | Simulation and hardware-based | Land Suitability assessment |
[26]/ 2019 | Humidity sensor Soil temperature sensor Temperature sensor Luminosity sensor | Artificial | Argula | Hardware-based | Monitoring |
[27]/ 2018 | Optical sensors Electrochemical sensors Airflow sensors Mechanical sensors Location sensors | Both | All Crops | Survey-based | Monitoring |
[28]/ 2019 | Different sensors | Natural | All Crops | Simulation-based | Monitoring |
[29]/ 2019 | Soil sensor Temperature sensor pH sensor Humidity sensor | Natural | Turmeric | Hardware-based | Controlling |
[30]/ 2018 | Humidity sensor Temperature sensor Luminosity sensor Water consumption sensor | Greenhouse | Cherry Tomatoes | Hardware-based | Tracking and monitoring |
[31]/ 2019 | Temperature sensor Humidity sensor Soil moisture sensor | Natural and Greenhouse | Mixed crops | Hardware-based | Controlling |
[32]/ 2019 | Soil moisture sensor Temperature and Humidity sensor | Greenhouse | Potato | Hardware-based | Monitoring |
[33]/ 2018 | Temperature sensor Soil moisture sensor Humidity sensor | Natural | Banana | Simulator-based | Monitoring |
[34]/ 2018 | Temperature sensor Humidity sensor | Natural | All Crops | Hardware-based | Monitoring |
[35]/ 2019 | Many Sensor | Natural | Vineyard | Hardware- and Simulator-based | Monitoring |
[36]/ 2018 | pH sensor Temperature sensor Humidity sensor CO2 concentration sensor | Greenhouse | Strawberry | Hardware-based | Monitoring |
[37]/ 2019 | Soil moisture sensor Luminosity sensor Water level sensor Temperature sensor | Natural | Name of the crop not revealed | Hardware-based | Monitoring |
[38]/ 2019 | Temperature sensor Water level sensor | Natural | Soyabean | Hardware-based | Monitoring |
[39]/ 2019 | Humidity sensor Light sensor CO2 concentration sensor Temperature sensor Windspeed sensor Direction sensor Camera sensor | Natural | Saffron | Proposed model | Monitoring |
2.2. Sensors Used in Precision Farming
Luminosity | Water Flow& Turbidity | Corm Weight | Ph | Temperature | Agronomical Variable |
---|---|---|---|---|---|
|
|
|
|
| Sensors Available |
2.7 V to 3.6 V 3 V to 5 V | 3.3 V to 5 V 5 Vto 29 V | 5V to 12 V 0V to 5 V | 3.3 V to 5 V 3.3 V to 5 V 2 V to 5 V | −0.2 V to 35 V 3 V to 5 V 3 V to 5 V 3.3 V to 5.5 V 2.4 V to 5.5 V | Operating Voltage |
75%to 80% High | ±3 L/min ±2l L/min | 0.05% 0.02% | ±0.1 pH ±0.02 pH ±0.01 pH | ±1 °C ±2 °C and 5% ±5 °C and ±2–5% ±2% RH 0.5 °C ±0.4 °C 0.1 | Precision |
$7.75 $8.81 | $37.17 $6.29 | $6.16 $8.81 | $62.90 $44.03 $25.16 | $0.68 $5.03 $6.79 $11.32 $70.45 | Cost |
Highly sensitive Highly sensitive | ±5% ±3% | 3 mV 19 HZ/KPa | High 0.02 High 0.02 High 0.02 | -- -- -- 0.1%RHand 0–1 °C 0.04–0.01 °C | Sensitivity |
1.25 mm × 1.75 mm × 3.1 mm 2 mm × 2.4 mm × 2.1 mm | 20 cm × 40 cm 1.2 mm diameter | 55.2 mm × 12.78 mm × 12.7 mm 400 µm × 400 µm × 10 µm | 42 mm × 32 mm × 1.66 mm 13.9 mm × 20.16 mm × 80.38 mm 50 mm × 47 mm × 16 mm | 4.699 mm × 4.699 mm 11 × 8.26 × 0.62 inches 14 mm × 18 mm × 5.5 mm 14 mm × 18mm × 5.5 mm 13.5 mm × 5.08 mm × 3.1 mm | Dimensions |
0.1to 40,000 Lux 1–3,800,000 Lux | 0 to 1000 ppm 1–5 L/min | 0 kg to 5 kg 1.5 Psi to 100 Psi | 0 to 14 0.01 to 14.00 0 to 14 | −55 °C to 150 °C 0 °C to 50 °C −40 °C to +125 °C (0 to 100% RH) −40 °C to 123.8 °C | Range |
8–11 h | 80 m/h | 5.5 gm to 10 gm | 6 to 6.4 | 16 °C to 27 °C 60% to 80% | Range required for artificial cultivation |
Very Less Less | Very Less Less | Very Less Less | Less Very Less Very Less | ±0.2 °C ±0.5 °C ±0.2 °C | Error value |
>30 min >1 h | <3 min <30 L/min> | <8.5 HZ <6 HZ | 2 min 10 min <1 min | 0.1 Hz 1 Hz 0.5 Hz 0.5 Hz 0.2 Hz | Sampling rate |
3. Problem Formulation
- RQ1 What is the percentage increase in crops cultivated using artificial methods and IoT?
- RQ2 What criteria are used to select sensors for soilless saffron cultivation?
- RQ3 What are the most frequently used sensors in IoT-based artificial saffron cultivation?
- RQ4 What is the percentage use of sensors for different practices related to saffron cultivation?
- RQ5 What is the production increase in major crops of the world and saffron after the use of the IoT?
4. Proposed System Model
4.1. Hardware Setup and Design
- DHT11 humidity sensor
- Industrial-grade Ph sensor PH2.0 Interface
- Seed Studio Grove TDS sensor
- Water flow sensor
- Load cell sensor
- Servo Motor 9 g
- Relay 12 V/5 A
- LED light white
- LCD 16 × 12
- Solar panel
- Battery
- Heater 1000 W
4.2. Block Diagram and Working
4.3. Hardware Setup for the Hydroponic Cultivation of Saffron
5. Results and Discussion
5.1. Analysis of the Research Problems
- RQ1: What is the percentage increase in crops cultivated using artificial methods and the IoT?
- RQ2: What criteria are used to select sensors for soilless saffron cultivation?
- First of all, the application and the environment in which the sensor was destined to be used and the range of the values which were intended to be sensed were defined. The range of the values was identified by studying various research articles related to the agronomical variables used for saffron cultivation [51,52,53,54,55,56].
- The major variables to be controlled and monitored were found to be the temperature, humidity, pH, water flow, weight of the corm, and luminosity. The sensors available for each variable were compared on the basis of the selection parameters and suitable nutrients given in Table 3.
- RQ3 What are the most frequently used sensors in IoT-based artificial saffron cultivation?
- RQ4 What is the percentage use of sensors for different practices related to saffron cultivation?
- RQ5 What is the production increase in major crops of world and saffron after the use of IoT?
5.2. Results from Hardware Setup
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet of-Things (IoT) based smart agriculture: Toward making the fields talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Shieh, J.; Huber, J.E.; Fleck, N.A.; Ashby, M.F. The selection of sensors. Prog. Mater. Sci. 2001, 46, 461–504. [Google Scholar] [CrossRef]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio) sensors for smart agriculture. TrAC Trends Anal. Chem. 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Demestichas, K.; Peppes, N.; Alexakis, T. Survey on security threats in agricultural IoT and smart farming. Sensors 2020, 20, 6458. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, M.W.; Bhushan, B.; Kumar, N. Applicability of wireless sensor networks & IoT in saffron & wheat crops: A smart agriculture perspective. Int. J. Sci. Technol. Res. 2020, 9, 2456–2461. [Google Scholar]
- Gsangaya, K.R.; Hajjaj, S.S.H.; Sultan, M.T.H.; Hua, L.S. Portable, wireless, and effective internet of things-based sensors for precision agriculture. Int. J. Environ. Sci. Technol. 2020, 17, 3901–3916. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, N.; Saini, R.K. Energy-Saving Sensors for Precision Agriculture in Wireless Sensor Network: A Review. In Proceedings of the 2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE), Dehradun, India, 22–23 November 2019; pp. 65–70. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef]
- Asiabani, N.; Rafiee, H.; Aminizadeh, M.; Mehrparvar Hosseini, E. Determining the Structure of Saffron Target Markets and Analyzing Its Impact on Iranian Exports. Saffron Agron. Technol. 2020, 8, 421–426. [Google Scholar]
- Giupponi, L.; Ceciliani, G.; Leoni, V.; Panseri, S.; Pavlovic, R.; Lingua, G.; Di Filippo, A.; Giorgi, A. Quality traits of saffron produced in Italy: Geographical area effect and good practices. J. Appl. Bot. Food Qual. 2019, 92, 336–342. [Google Scholar]
- Mekala, M.S.; Viswanathan, P. (t, n): Sensor Stipulation with THAM index for smart agriculture decision-making IoT system. Wirel. Pers. Commun. 2020, 111, 1909–1940. [Google Scholar] [CrossRef]
- Syrový, T.; Vik, R.; Pretl, S.; Syrová, L.; Čengery, J.; Hamáček, A.; Kubáč, L.; Menšík, L. Fully printed disposable IoT soil moisture sensors for precision agriculture. Chemosensors 2020, 8, 125. [Google Scholar] [CrossRef]
- Palazzi, V.; Gelati, F.; Vaglioni, U.; Alimenti, F.; Mezzanotte, P.; Roselli, L. Leaf-compatible autonomous RFID-based wireless temperature sensors for precision agriculture. In Proceedings of the 2019 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Orlando, FL, USA, 20–23 January 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T. A systematic literature review of the factors affecting the precision agriculture adoption process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Suma, V. Internet-of-Things (IoT) based Smart Agriculture in India-An Overview. J. ISMAC 2021, 3, 1–15. [Google Scholar]
- Garg, A.; Munoth, P.; Goyal, R. Application of soil moisture sensor in agriculture. In Proceedings of the International Conference on Hydraulics, Water Resources and Coastal Engineering (Hydro 2016), Pune, India, 8–10 December 2016; pp. 8–10. [Google Scholar]
- Placidi, P.; Morbidelli, R.; Fortunati, D.; Papini, N.; Gobbi, F.; Scorzoni, A. Monitoring soil and ambient parameters in the iot precision agriculture scenario: An original modeling approach dedicated to low-cost soil water content sensors. Sensors 2021, 21, 5110. [Google Scholar] [CrossRef] [PubMed]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Ratnaparkhi, S.; Khan, S.; Arya, C.; Khapre, S.; Singh, P.; Diwakar, M.; Shankar, A. Smart agriculture sensors in IOT: A review. Mater. Today Proc. 2020, 156, 467–474. [Google Scholar]
- Cisternas, I.; Caro, A.; Rodríguez, A. Precision agriculture implementations: A systematic literature review. In Proceedings of the III International Conference on Agro BigData and Decision Support Systems in Agriculture, Valparaíso, Chile, 25–27 September 2019; p. 33. [Google Scholar]
- Sagheer, A.; Mohammed, M.; Riad, K.; Alhajhoj, M. A cloud-based IoT platform for precision control of soilless greenhouse cultivation. Sensors 2020, 21, 223. [Google Scholar] [CrossRef]
- Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research outlook. Remote Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Baranwal, T.; Pateriya, P.K. Development of IoT based smart security and monitoring devices for agriculture. In Proceedings of the 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; pp. 597–602. [Google Scholar] [CrossRef]
- Yu, L.; Gao, W.; Shamshiri, R.R.; Tao, S.; Ren, Y.; Zhang, Y.; Su, G. Review of research progress on soil moisture sensor technology. Int. J. Agric. Biol. Eng. 2021, 14, 32–42. [Google Scholar] [CrossRef]
- Vincent, D.R.; Deepa, N.; Elavarasan, D.; Srinivasan, K.; Chauhdary, S.H.; Iwendi, C. Sensors driven AI-based agriculture recommendation model for assessing land suitability. Sensors 2019, 19, 3667. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, U.J.L.; Pessin, G.; da Costa, C.A.; da Rosa Righi, R. AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops. Comput. Electron. Agric. 2019, 161, 202–213. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Liu, S.; Guo, L.; Webb, H.; Ya, X.; Chang, X. Internet of Things monitoring system of modern eco-agriculture based on cloud computing. IEEE Access 2019, 7, 37050–37058. [Google Scholar] [CrossRef]
- Chen, W.L.; Lin, Y.B.; Lin, Y.W.; Chen, R.; Liao, J.K.; Ng, F.L.; Chan, Y.Y.; Liu, Y.C.; Wang, C.C.; Chiu, C.H.; et al. AgriTalk: IoT for precision soil farming of turmeric cultivation. IEEE Internet Things J. 2019, 6, 5209–5223. [Google Scholar] [CrossRef]
- González-Amarillo, C.A.; Corrales-Muñoz, J.C.; Mendoza-Moreno, M.Á.; Hussein, A.F.; Arunkumar, N.; Ramirez-González, G. An IoT-based traceability system for greenhouse seedling crops. IEEE Access 2018, 6, 67528–67535. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Mazon-Olivo, B.; Hernández-Rojas, D.; Maza-Salinas, J.; Pan, A. Rules engine and complex event processor in the context of internet of things for precision agriculture. Comput. Electron. Agric. 2018, 154, 347–360. [Google Scholar] [CrossRef]
- Goap, A.; Sharma, D.; Shukla, A.K.; Krishna, C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agric. 2018, 155, 41–49. [Google Scholar] [CrossRef]
- Kamienski, C.; Soininen, J.P.; Taumberger, M.; Dantas, R.; Toscano, A.; Salmon Cinotti, T.; Filev Maia, R.; Torre Neto, A. Smart water management platform: IoT-based precision irrigation for agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, M.; Shin, C. IoT-based strawberry disease prediction system for smart farming. Sensors 2018, 18, 4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keswani, B.; Mohapatra, A.G.; Mohanty, A.; Khanna, A.; Rodrigues, J.J.; Gupta, D.; De Albuquerque, V.H.C. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2019, 31, 277–292. [Google Scholar] [CrossRef]
- Gill, S.S.; Chana, I.; Buyya, R. IoT based agriculture as a cloud and big data service: The beginning of digital India. J. Organ. End User Comput. (JOEUC) 2017, 29, 1–23. [Google Scholar] [CrossRef]
- Triantafyllou, A.; Sarigiannidis, P.; Bibi, S. Precision agriculture: A remote sensing monitoring system architecture. Information 2019, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Perales Gómez, Á.L.; Lopez-de-Teruel, P.E.; Ruiz, A.; García-Mateos, G.; Bernabé García, G.; García Clemente, F.J. FARMIT: Continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming. Clust. Comput. 2022, 25, 1–16. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT technology in agriculture: A systematic literature review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Chawade, A.; van Ham, J.; Blomquist, H.; Bagge, O.; Alexandersson, E.; Ortiz, R. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of wireless sensor networks in precision agriculture: A review. Wirel. Pers. Commun. 2019, 107, 471–512. [Google Scholar] [CrossRef]
- Bauer, A.; Bostrom, A.G.; Ball, J.; Applegate, C.; Cheng, T.; Laycock, S.; Rojas, S.M.; Kirwan, J.; Zhou, J. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production. Hortic. Res. 2019, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.K.; De, D. Genetic algorithm based internet of precision agricultural things (IoPAT) for agriculture 4.0. Internet Things 2022, 18, 100201. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Kong, J.L.; Jin, X.B.; Wang, X.Y.; Su, T.L.; Zuo, M. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors 2018, 18, 1731. [Google Scholar] [CrossRef] [Green Version]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Aghaei, Z.; Jafari, S.M.; Dehnad, D.; Ghorbani, M.; Hemmati, K. Refractancewindow as an innovative approach for the drying of saffron petals and stigma. J. Food Process Eng. 2018, 41, e12863. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Victorino, Í.M.M.; Donno, D.; Faccio, A.; Lumini, E.; Bianciotto, V.; Scariot, V. Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile of saffron in soilless cultivation. Agronomy 2019, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Guntukula, R. Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. J. Public Aff. 2020, 20, e2040. [Google Scholar] [CrossRef]
- Khalili, M.R.; Asadi, M.E.; Torkashvand, A.M.; Pazira, E. Regression Analysis for Yield Comparison of saffron as affected by physicochemical properties of the soil, case study in Northeast of Iran. Agric. Res. 2020, 9, 568–576. [Google Scholar] [CrossRef]
- Thakur, A.K.; Singh, R.; Gehlot, A.; Kaviti, A.K.; Aseer, R.; Suraparajud, S.K.; Natarajand, S.K.; Sikarwar, V.S. Advancements in solar technologies for sustainable development of agricultural sector in India: A comprehensive review on challenges and opportunities. Environ. Sci. Pollut. Res. 2022, 29, 43607–43634. [Google Scholar] [CrossRef]
- Siregar, S.; Sari, M.I.; Jauhari, R. Automation system hydroponic using smart solar power plant unit. J. Teknol. 2016, 78, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Husaini, A.M.; Hassan, B.; Ghani, M.Y.; Teixeira da Silva, J.A.; Kirmani, N.A. Saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Funct. Plant Sci. Biotechnol. 2010, 4, 108–115. [Google Scholar]
- Hassan-Beygi, S.R.; Ghanbarian, D.; Kianmehr, M.H.; Farahmand, M. Some physical properties of saffron crocus corm. Cercet. Mold. 2010, 141, 17–29. [Google Scholar]
- Majid, M.; Khan, J.N.; Shah, Q.M.A.; Masoodi, K.Z.; Afroza, B.; Parvaze, S. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L.; var. Longifolia) and comparison with protected soil-based cultivation. Agric. Water Manag. 2021, 245, 106572. [Google Scholar] [CrossRef]
- Ali, A.; Hakim, I.A. An overview of the production practices and trade mechanism of saffron in Kashmir Valley (India): Issues and challenges. Pac. Bus. Rev. Int. 2017, 10, 97–106. [Google Scholar]
- Nehvi, F.A.; Yasmin, S. Policy and research initiatives for promotion of saffron farming system and trade for doubling farmers’ income. J. Hortic. Postharvest Res. 2021, 4, 89–110. [Google Scholar]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Hydroponic systems. In Plant Factory; Academic Press: Cambridge, MA, USA, 2020; pp. 273–283. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, H.J.; Cho, W.J.; Park, S.H.; Yang, S.H. Validation testing of an ion-specific sensing and control system for precision hydroponic macronutrient management. Comput. Electron. Agric. 2019, 156, 660–668. [Google Scholar] [CrossRef]
- Guzmán-Valdivia, C.H.; Talavera-Otero, J.; Désiga-Orenday, O. Turbulent Kinetic Energy Distribution of Nutrient Solution Flow in NFT Hydroponic Systems Using Computational Fluid Dynamics. AgriEngineering 2019, 1, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A.M. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows. Comput. Phys. Commun. 2018, 224, 63–80. [Google Scholar] [CrossRef]
- Rötter, R.P.; Tao, F.; Höhn, J.G.; Palosuo, T. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot. 2015, 66, 3463–3476. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D.; Chatzieustratiou, E.; Pervolaraki, G.; Gizas, G.; Sigrimis, N. Modelling Na and Cl concentrations in the recycling nutrient solution of a closed-cycle pepper cultivation. Biosyst. Eng. 2008, 99, 282–291. [Google Scholar] [CrossRef]
- Kour, K.; Gupta, D.; Gupta, K.; Dhiman, G.; Juneja, S.; Viriyasitavat, W.; Mohafez, H.; Islam, M.A. Smart-Hydroponic-Based Framework for Saffron Cultivation: A Precision Smart Agriculture Perspective. Sustainability 2022, 14, 1120. [Google Scholar] [CrossRef]
- Schroeder, F.G.; Lozoya, D.R.; Ruser, P. Hydroponic forcing of saffron (Crocus sativus L.). Acta Hortic. 2018, 1273, 281–288. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Alsadon, A.; Ibrahim, A.; El-Mahrouk, M. Effects of Growing Substrate, Mode of Nutrient Supply, and Saffron Corm Size on Flowering, Growth, Photosynthetic Competence, and Cormlet Formation in Hydroponics. HortTechnology 2022, 32, 234–240. [Google Scholar] [CrossRef]
- Mirsafi, Z.S.; Sepaskhah, A.R.; Ahmadi, S.H.; Kamgar-Haghighi, A.A. Assessment of AquaCrop model for simulating growth and yield of saffron (Crocus sativus L.). Sci. Hortic. 2016, 211, 343–351. [Google Scholar] [CrossRef]
- Mahallati, M.N. Advances in modeling saffron growth and development at different scales. In Saffron; Woodhead Publishing: Sawston, UK, 2020; pp. 139–167. [Google Scholar]
S No. | Parameter | Value |
---|---|---|
1 | pH | 6–6.4 |
2 | Copper | <5 ppm |
3 | Water requirement | 400 mm |
4 | Temperature | 23–27 °C first (90–150 days) then 25 °C |
5 | Incubation temperature | 23 °C |
6 | Relative humidity | 60–85% |
7 | Light | 8–11 h in hydro |
8 | CO2 | 400 ppm |
9 | Temperature after incubation | 17 °C,+−2 |
10 | Relative humidity after incubation | 60% |
11 | Incubation temperature | 16–23 °C |
12 | Flowering temperature | 23–27 °C |
13 | Corm weight | 5.7 g, (3.2–3.5 cm diameter) |
14 | Nutrient solution | Half-strength Hoagland medium |
15 | Electroconductivity | 1100 µs/cm, |
16 | Flow rate | 80 mL/h |
Macro-Nutrients(mg L−1) | ||
17 | Nitrogen | 163.20 |
18 | Phosphorus | 34.52 |
18 | Potassium | 172.56 |
20 | Calcium | 105.11 |
21 | Magnesium, sulfur | 33.8, 62.70 |
Micro-Nutrients (mg L−1) | ||
22 | Iron | 1.83 |
23 | Boron | 0.23 |
24 | Mn | 0.27 |
25 | Zinc | 0.19 |
26 | Copper | 0.12 |
27 | Molybdenum | 0.07 |
Selection Parameters | Description |
---|---|
Resolution | It is the smallest measurable change in the values which can be detected. |
Range | It includes all the values between the maximum and minimum. It depends on the application values which need to be sensed. |
Precision | Closeness of sensor reading to the true value. It should always be high to ensure optimal results. |
Cost | The sensor selection should be performed while keeping the cost in view with respect to the application for which the sensor is being used. |
Error percentage Response time Dimensions (size and weight) | It is defined as the difference between the measured value and the true value. Ideally, it should always be the minimum. It is defined as the time lag between the input and output and should be low. The selected sensors should always be compact in size and light in weight. |
Calibration | The operation of the sensors should be easy and frequent in calibration. |
Sensitivity | It is the ratio given by the change in the output to the change in the input and is preferably high. This is directly proportional to the cost. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kour, K.; Gupta, D.; Gupta, K.; Anand, D.; Elkamchouchi, D.H.; Pérez-Oleaga, C.M.; Ibrahim, M.; Goyal, N. Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation. Sensors 2022, 22, 8905. https://doi.org/10.3390/s22228905
Kour K, Gupta D, Gupta K, Anand D, Elkamchouchi DH, Pérez-Oleaga CM, Ibrahim M, Goyal N. Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation. Sensors. 2022; 22(22):8905. https://doi.org/10.3390/s22228905
Chicago/Turabian StyleKour, Kanwalpreet, Deepali Gupta, Kamali Gupta, Divya Anand, Dalia H. Elkamchouchi, Cristina Mazas Pérez-Oleaga, Muhammad Ibrahim, and Nitin Goyal. 2022. "Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation" Sensors 22, no. 22: 8905. https://doi.org/10.3390/s22228905
APA StyleKour, K., Gupta, D., Gupta, K., Anand, D., Elkamchouchi, D. H., Pérez-Oleaga, C. M., Ibrahim, M., & Goyal, N. (2022). Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation. Sensors, 22(22), 8905. https://doi.org/10.3390/s22228905