The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming
Abstract
:1. Introduction
2. The Framework of Precision Pig Farming
- The IoT equipment module contains data collection sensors, environment monitoring and control devices, connection and network transmission devices and other related facilities. The IoT system should be operated properly in a harsh environment to ensure data and information can meet pig farming’s needs [29].
- The data module consists of data collection, data processing, data storage and an equipment failure warning system [30]. The data collection and processing are mainly responsible for processing data collected by IoT equipment, which generates usable data and information. The equipment failure warning system mainly monitors sensors, automatic feeders, pumps and other physical equipment to collect data normally.
- The AI-based decision and analysis module contains pig health and welfare evaluation, disease diagnosis, environment control, nutrition and production management and a pig farm decision-making system. The pig’s welfare is usually expressed by the pig’s behavior [31], and the pig’s health, welfare and disease diagnosis can be evaluated through a decision making-system using vision and sound signals. On the other hand, an AI-based decision-making system controls the operation of physical equipment involving environmental control and nutrition management to increase pig health and welfare, mainly based on the results of the above analysis [28,32].
- The visualization module provides farmers with visual information and displays valid information output from other modules.
3. AI-Based Intelligent Equipment for Precision Pig Farming
4. AI-Based Vision for Pig Detection and Tracking
4.1. Pig Detection
4.2. Pig Tracking
4.3. Summary
5. AI-Based Vision Pig Behavior Recognition
5.1. Recognition of Pig Drinking Behavior
5.2. Recognition of Pig Mounting and Estrus Behaviors
5.3. Recognition of Aggressive Pig Behavior
5.4. Recognition of Pig Nursing, Lying down and Other Behaviors
5.5. Summary
6. AI-Based Sound for Pig Disease and Estrus Diagnosis
7. Challenges and Development Opportunities
7.1. Key Challenges in the Pig Monitoring System
- The reliability, ease of maintenance and use of intelligent devices are important challenges. In terms of reliability, the sensor or devices may need to be installed on the roof of the pig house or another unfriendly environment (e.g., high temperature, humidity, dust and unstable electricity), which will cause some erosion and damage to the hardware (such as the sensor) [34,162]. On the other hand, livestock farming is often located in remote rural areas, which causes inconvenience to personnel maintenance [34]. Meanwhile, the high-technology devices or systems need skilled farming staff to operate; how to develop precision pig devices or systems that are not limited by the level of education and ease of use for farmers is an important challenge [163].
- In terms of pig farming data, there are also problems such as a lack of extensive high-quality datasets and data standards. As the commercial or bio-security restrictions of pig farming increase, so do the difficulty of data collection and publication [164]. With the wide usage of 3D sensors, data storage or compressed standards are also demanded. Take the realsense D455 3D camera as an example; with 15 fps acquisition frequency and 848 × 480 image resolution, the storage capacity is about 50 G for one hour per day, and the hard disk capacity is about 1.2 T for one day. Therefore, data collection and data storage are important challenges in establishing a PLF system [165].
- Pig’s digital growth model is urgently demanded. The growth cycle of pigs usually lasts 5 or 8 months. Along with pigs’ body characteristics and weight changes, the nutritional requirements of pigs at different growth stages are different [166,167,168]. Therefore, a good pig growth model not only can monitor the weight change of pigs but could also guide the feeding nutrition management for the pig industry to achieve low-cost and sustainable farming [33].
7.2. Development Opportunities for the Pig Industry
- Continue to develop automatic recognition approaches for pig’s external appearance phenotype and inner physiology status in the complex farming environment [10,31]; Establish multi-modal methods that could utilize vision and sound signals to detect behavior and diagnosis diseases at different growth stages, further quantify the identification results [25,172].
- Improve the automatic pig farming level: The automation of machinery and real-time monitoring devices can be further developed to reduce labor requirements [37]. In addition, a digital pig growth model, and health and welfare evaluation system should be established to increase product traceability and promote automatic pig management levels [55,132].
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Statistics, N.B. China Statistical Yearbook-2021; China Statistics Press: Beijing, China, 2021; p. 1. [Google Scholar]
- Maksym, V.; Chemerys, V.; Dushka, V.; Berezivskyi, Y. The main trends and perspectives of pork production development in the world. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Econ. Sci. 2020, 22, 21–27. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Li, X.; Pu, D. Research advance on computer vision in behavioral analysis of pigs. J. Agric. Sci. Technol. 2019, 21, 59–69. [Google Scholar]
- Qiao, Y.; Kong, H.; Clark, C.; Lomax, S.; Su, D.; Eiffert, S.; Sukkarieh, S. Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation. Comput. Electron. Agric. 2021, 185, 106143. [Google Scholar] [CrossRef]
- Marchant-Forde, J.N.; Boyle, L.A. COVID-19 effects on livestock production: A One Welfare issue. Front. Vet. Sci. 2020, 7, 585787. [Google Scholar]
- Grandin, T. Methods to prevent future severe animal welfare problems caused by COVID-19 in the pork industry. Animals 2021, 11, 830. [Google Scholar] [CrossRef] [PubMed]
- Heerwagen, L.R.; Mørkbak, M.R.; Denver, S.; Sandøe, P.; Christensen, T. The role of quality labels in market-driven animal welfare. J. Agric. Environ. Ethics 2015, 28, 67–84. [Google Scholar] [CrossRef]
- Thorslund, C.A.; Aaslyng, M.D.; Lassen, J. Perceived importance and responsibility for market-driven pig welfare: Literature review. Meat Sci. 2017, 125, 37–45. [Google Scholar] [CrossRef]
- De Luca, S.; Zanardi, E.; Alborali, G.L.; Ianieri, A.; Ghidini, S. Abattoir-based measures to assess swine welfare: Analysis of the methods adopted in European slaughterhouses. Animals 2021, 11, 226. [Google Scholar] [CrossRef]
- Gómez, Y.; Stygar, A.H.; Boumans, I.J.; Bokkers, E.A.; Pedersen, L.J.; Niemi, J.K.; Pastell, M.; Manteca, X.; Llonch, P. A systematic review on validated precision livestock farming technologies for pig production and its potential to assess animal welfare. Front. Vet. Sci. 2021, 8, 660565. [Google Scholar] [CrossRef]
- Racewicz, P.; Ludwiczak, A.; Skrzypczak, E.; Składanowska-Baryza, J.; Biesiada, H.; Nowak, T.; Nowaczewski, S.; Zaborowicz, M.; Stanisz, M.; Ślósarz, P. Welfare Health and Productivity in Commercial Pig Herds. Animals 2021, 11, 1176. [Google Scholar] [CrossRef]
- Ao Nong, G. Application of intelligent farming mode in pig farm exploration. Guangdong Feed 2019, 28, 15–17. [Google Scholar]
- Garcia, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodriguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Feng, H.; Huang, Q.; Xiao, X.; Zhang, X. Wearable Internet of Things enabled precision livestock farming in smart farms: A review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. J. Clean. Prod. 2021, 312, 127712. [Google Scholar] [CrossRef]
- Gauthier, R.; Largouët, C.; Dourmad, J.Y. Prediction of litter performance in lactating sows using machine learning, for precision livestock farming. Comput. Electron. Agric. 2022, 196, 106876. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Lehr, H.; Black, J.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision livestock farming: An international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1–9. [Google Scholar]
- He, D.; Liu, D.; Zhao, K. Review of Perceiving Animal Information and Behavior in Precision Livestock Farming. Trans. Chin. Soc. Agric. Mach. 2016, 47, 231–244. [Google Scholar]
- Su, Q.; Tang, J.; Zhai, J.; Sun, Y.; He, D. Automatic tracking of the dairy goat in the surveillance video. Comput. Electron. Agric. 2021, 187, 106254. [Google Scholar] [CrossRef]
- Collins, L.; Smith, L. Smart agri-systems for the pig industry. Animal 2022, 16, 100518. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M. Precision livestock farming: A ‘per animal’approach using advanced monitoring technologies. Animal 2016, 10, 1482–1483. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated cattle counting using Mask R-CNN in quadcopter vision system. Comput. Electron. Agric. 2020, 171, 105300. [Google Scholar] [CrossRef]
- Tan, M.; Hou, Y.; Zhang, L.; Shi, S.; Long, W.; Ma, Y.; Zhang, T.; Li, F.; Oenema, O. Operational costs and neglect of end-users are the main barriers to improving manure treatment in intensive livestock farms. J. Clean. Prod. 2021, 289, 125149. [Google Scholar] [CrossRef]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Norton, T.; Chen, C.; Larsen, M.; Berckmans, D. Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [Green Version]
- Tzanidakis, C.; Simitzis, P.; Arvanitis, K.; Panagakis, P. An overview of the current trends in precision pig farming technologies. Livest. Sci. 2021, 249, 104530. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Bhujel, A.; Moon, B.E.; Kim, H.T. The application of cameras in precision pig farming: An overview for swine-keeping professionals. Animals 2021, 11, 2343. [Google Scholar] [CrossRef]
- Shahab, H.; Abbas, T.; Sardar, M.U.; Basit, A.; Waqas, M.M.; Raza, H. Internet of Things Implications For The Adequate Development of The Smart Agricultural Farming Concepts. Big Data Agric. 2020, 3, 12–17. [Google Scholar] [CrossRef]
- Xu, K.; Li, Y.; Liu, C.; Liu, X.; Hao, X.; Gao, J.; Maropoulos, P.G. Advanced data collection and analysis in data-driven manufacturing process. Chin. J. Mech. Eng. 2020, 33, 1–21. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.X.; Norton, T. Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning. Comput. Electron. Agric. 2021, 187, 106255. [Google Scholar] [CrossRef]
- Cornou, C.; Kristensen, A.R. Use of information from monitoring and decision support systems in pig production: Collection, applications and expected benefits. Livest. Sci. 2013, 157, 552–567. [Google Scholar] [CrossRef]
- Gu, M.; Hou, B.; Zhou, J.; Cao, K.; Chen, X.; Duan, C. An Industrial Internet Platform for Massive Pig Farming (IIP4MPF). J. Comput. Commun. 2020, 8, 181. [Google Scholar] [CrossRef]
- Ariyadech, S.; Bonde, A.; Sangpetch, O.; Woramontri, W.; Siripaktanakon, W.; Pan, S.; Sangpetch, A.; Noh, H.Y.; Zhang, P. Dependable Sensing System for Pig Farming. In Proceedings of the 2019 IEEE Global Conference on Internet of Things (GCIoT), Dubai, United Arab Emirates, 4–7 December 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, S.; Wang, T.; Hu, J.; Ruan, J.; Ruan, J. Willingness and Influencing Factors of Pig Farmers to Adopt Internet of Things Technology in Food Traceability. Sustainability 2021, 13, 8861. [Google Scholar] [CrossRef]
- Plà-Aragonès, L.M. The Evolution of DSS in the Pig Industry and Future Perspectives. In EURO Working Group on DSS; Springer: Cham, Switzerland, 2021; pp. 299–323. [Google Scholar]
- Benjamin, M.; Yik, S. Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, A.; Carpentier, L.; Piette, D.; Boyle, L.A.; Berckmans, D.; Norton, T. An ethogram of biter and bitten pigs during an ear biting event: First step in the development of a Precision Livestock Farming tool. Appl. Anim. Behav. Sci. 2019, 215, 26–36. [Google Scholar] [CrossRef]
- Vranken, E.; Berckmans, D. Precision livestock farming for pigs. Anim. Front. 2017, 7, 32–37. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Liu, D.; Chen, B.; Bian, X.; Tang, J.; Xiang, Y.; Lou, F. Design of Jinhua pig precision breeding system. Agric. Dev. Equipments 2021, 10, 30–32. [Google Scholar] [CrossRef]
- Larsen, M.L.V.; Wang, M.Q.; Norton, T. Information Technologies for Welfare Monitoring in Pigs and Their Relation to Welfare Quality(R). Sustainability 2021, 13, 692. [Google Scholar] [CrossRef]
- Hemeryck, M.; Berckmans, D.; Vrancken, E.; Tullo, E.; Fontana, I.; Guarino, M.; van Waterschoot, T. The Pig Cough Monitor in the EU-PLF project: Results and multimodal data analysis. In Proceedings of the 7th European Conference on Precision Livestock Farming (EC-PLF), Milan, Italy, 15–18 September 2015; pp. 147–155. [Google Scholar]
- Gray, J.; Banhazi, T.M.; Kist, A.A. Wireless data management system for environmental monitoring in livestock buildings. Inf. Process. Agric. 2017, 4, 1–17. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, S.; Mu, H.; Bi, Y.; Chen, X. Design of auto-precision feeding system for pigs. Trans. Chin. Soc. Agric. Mach. 2010, 41, 174–177. [Google Scholar]
- Garrido-Izard, M.; Correa, E.C.; Requejo, J.M.; Diezma, B. Continuous monitoring of pigs in fattening using a multi-sensor system: Behavior patterns. Animals 2020, 10, 52. [Google Scholar] [CrossRef]
- Shipu, X.; Yunsheng, W.; Wenwen, H.; Yingjing, W.; Yong, L. Design and Implementation of Pig Growth Monitoring System Based on Wireless Communication. In Proceedings of the 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 14–16 August 2020; pp. 239–243. [Google Scholar]
- Tan, H.; Zhu, W. Identification of drinking water behavior of pigs based on contour. Jiangsu Agric. Sci. 2018, 46, 166–170. [Google Scholar]
- Li, D.; Chen, Y.F.; Zhang, K.F.; Li, Z.B. Mounting Behaviour Recognition for Pigs Based on Deep Learning. Sensors 2019, 19, 4924. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 2013, 93, 111–120. [Google Scholar] [CrossRef]
- Kashiha, M.A.; Bahr, C.; Ott, S.; Moons, C.P.; Niewold, T.A.; Tuyttens, F.; Berckmans, D. Automatic monitoring of pig locomotion using image analysis. Livest. Sci. 2014, 159, 141–148. [Google Scholar] [CrossRef]
- Brünger, J.; Traulsen, I.; Koch, R. Model-based detection of pigs in images under sub-optimal conditions. Comput. Electron. Agric. 2018, 152, 59–63. [Google Scholar] [CrossRef]
- Riekert, M.; Klein, A.; Adrion, F.; Hoffmann, C.; Gallmann, E. Automatically detecting pig position and posture by 2D camera imaging and deep learning. Comput. Electron. Agric. 2020, 174, 105391. [Google Scholar] [CrossRef]
- Ji, Y.P.; Yang, Y.; Liu, G. Recognition of Pig Eating and Drinking Behavior Based on Visible Spectrum and YOLOv2. Spectrosc. Spectr. Anal. 2020, 40, 1588–1594. [Google Scholar] [CrossRef]
- Riekert, M.; Opderbeck, S.; Wild, A.; Gallmann, E. Model selection for 24/7 pig position and posture detection by 2D camera imaging and deep learning. Comput. Electron. Agric. 2021, 187, 106213. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Gao, Y.; Lei, M.; Liu, W.; Gong, Y. Pig cough sound recognition based on deep belief network. Trans. Chin. Soc. Agric. Mach. 2018, 49, 179–186. [Google Scholar]
- Li, X.; Zhao, J.; Gao, Y.; Liu, W.; Lei, M.; Tan, H. Pig continuous cough sound recognition based on continuous speech recognition technology. Trans. Chin. Soc. Agric. Eng. 2019, 35, 174–180. [Google Scholar]
- Wang, X.; Zhao, X.; He, Y.; Wang, K. Cough sound analysis to assess air quality in commercial weaner barns. Comput. Electron. Agric. 2019, 160, 8–13. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, J.; Banerjee, A.; Li, J. Automatic Recognition of Porcine Abnormalities Based on a Sound Detection and Recognition System. Trans. Asabe 2019, 62, 1755–1765. [Google Scholar] [CrossRef]
- Li, J.; Tian, J.; Zhang, S. Research on recognition and localization of porcine cough sounds. Heilongjiang Anim. Sci. Vet. Med. 2020; 2020, 36–41. [Google Scholar] [CrossRef]
- Shen, W.; Tu, D.; Yin, Y.; Bao, J. A new fusion feature based on convolutional neural network for pig cough recognition in field situations. Inf. Process. Agric. 2020, 8, 573–580. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X.; Liu, W.; Gao, Y.; Lei, M.; Tan, H.; Yang, D. DNN-HMM based acoustic model for continuous pig cough sound recognition. Int. J. Agric. Biol. Eng. 2020, 13, 186–193. [Google Scholar] [CrossRef]
- Chen, P.; Tang, W.; Yin, D.; Yang, B. Sow Estrus Diagnosis from Sound Samples Based on Improved Deep Learning. In International Conference on Artificial Intelligence and Security; Springer: Cham, Switzerland, 2021; pp. 132–143. [Google Scholar]
- Hong, M.; Ahn, H.; Atif, O.; Lee, J.; Park, D.; Chung, Y. Field-applicable pig anomaly detection system using vocalization for embedded board implementations. Appl. Sci. 2020, 10, 6991. [Google Scholar] [CrossRef]
- Chen, G.; Shen, S.; Wen, L.; Luo, S.; Bo, L. Efficient pig counting in crowds with keypoints tracking and spatial-aware temporal response filtering. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 10052–10058. [Google Scholar]
- Caria, M.; Sara, G.; Todde, G.; Polese, M.; Pazzona, A. Exploring smart glasses for augmented reality: A valuable and integrative tool in precision livestock farming. Animals 2019, 9, 903. [Google Scholar] [CrossRef]
- Hemeryck, M.; Berckmans, D. Pig Cough Monitoring in the EU-PLF Project: First Results; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 717–723. [Google Scholar]
- Carpentier, L.; Hemeryck, M.; Wouters, J.; Berckmans, D.; Vranken, E.; Norton, T.; Berckmans, D. Economical case study of the SOMO respiratory distress monitor in pigs. In Proceedings of the Asian Conference on Precision Livestock Farming, Beijing, China, 9–11 September 2016; pp. 1–5. [Google Scholar]
- Yin, Y.; Tu, D.; Shen, W.; Bao, J. Recognition of sick pig cough sounds based on convolutional neural network in field situations. Inf. Process. Agric. 2021, 8, 369–379. [Google Scholar] [CrossRef]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Morrison, R.S.; Jongman, E.C. Remotely sensed imagery for early detection of respiratory disease in pigs: A pilot study. Animals 2020, 10, 451. [Google Scholar] [CrossRef]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Unnithan, R.R.; Morrison, R.S.; Jongman, E.C. Using imagery and computer vision as remote monitoring methods for early detection of respiratory disease in pigs. Comput. Electron. Agric. 2021, 187, 106283. [Google Scholar] [CrossRef]
- Condotta, I.C.; Brown-Brandl, T.M.; Silva-Miranda, K.O.; Stinn, J.P. Evaluation of a depth sensor for mass estimation of growing and finishing pigs. Biosyst. Eng. 2018, 173, 11–18. [Google Scholar] [CrossRef]
- Kongsro, J. Estimation of pig weight using a Microsoft Kinect prototype imaging system. Comput. Electron. Agric. 2014, 109, 32–35. [Google Scholar] [CrossRef]
- Zhang, L.; Gray, H.; Ye, X.; Collins, L.; Allinson, N. Automatic Individual Pig Detection and Tracking in Pig Farms. Sensors 2019, 19, 1188. [Google Scholar] [CrossRef]
- Cowton, J.; Kyriazakis, I.; Bacardit, J. Automated Individual Pig Localisation, Tracking and Behaviour Metric Extraction Using Deep Learning. IEEE Access 2019, 7, 108049–108060. [Google Scholar] [CrossRef]
- Van der Zande, L.; Guzhva, O.; Rodenburg, T. Individual Detection and Tracking of Group Housed Pigs in Their Home Pen Using Computer Vision. Front. Anim. Sci. 2021, 2, 669312. [Google Scholar] [CrossRef]
- Chen, F.; Liang, X.; Chen, L.; Liu, B.; Lan, Y. Novel method for real-time detection and tracking of pig body and its different parts. Int. J. Agric. Biol. Eng. 2020, 13, 144–149. [Google Scholar] [CrossRef]
- Qiao, Y.; Truman, M.; Sukkarieh, S. Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming. Comput. Electron. Agric. 2019, 165, 104958. [Google Scholar] [CrossRef]
- Huang, X.; Hu, Z.; Qiao, Y.; Sukkarieh, S. Deep Learning-Based Cow Tail Detection and Tracking for Precision Livestock Farming. IEEE/ASME Trans. Mechatronics 2022, 1–9. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, Y.; Min, L.; van Putten, A.; Knol, E.; Visser, B.; Rodenburg, T.; Bolhuis, L.; Bijma, P. Video-based Detection and Tracking with Improved Re-Identification Association for Pigs and Laying Hens in Farms. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Online, 6–8 February 2022; SciTePress: Setúbal, Portugal, 2022. [Google Scholar]
- McFarlane, N.J.; Schofield, C.P. Segmentation and tracking of piglets in images. Mach. Vis. Appl. 1995, 8, 187–193. [Google Scholar] [CrossRef]
- Tu, G.J.; Karstoft, H.; Pedersen, L.J.; Jørgensen, E. Foreground detection using loopy belief propagation. Biosyst. Eng. 2013, 116, 88–96. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Richter, U.; Hensel, O.; Edwards, S.; Sturm, B. Using machine vision for investigation of changes in pig group lying patterns. Comput. Electron. Agric. 2015, 119, 184–190. [Google Scholar] [CrossRef]
- Yiyang, L.; Longqing, S.; Yuanbing, Z.; Yue, L. Individual pig object detection algorithm based on Gaussian mixture model. Int. J. Agric. Biol. Eng. 2017, 10, 186–193. [Google Scholar] [CrossRef]
- Jung, W.; Kim, S.H.; Hong, S.P.; Seo, J. An AIoT Monitoring System for Multi-Object Tracking and Alerting. CMC-Comput. Mater. Contin. 2021, 67, 337–348. [Google Scholar] [CrossRef]
- Gan, H.M.; Ou, M.Q.; Zhao, F.Y.; Xu, C.G.; Li, S.M.; Chen, C.X.; Xue, Y.J. Automated piglet tracking using a single convolutional neural network. Biosyst. Eng. 2021, 205, 48–63. [Google Scholar] [CrossRef]
- Sha, Z.; Feng, H.; Rui, X.; Zeng, Z. PIG Tracking Utilizing Fiber Optic Distributed Vibration Sensor and YOLO. J. Light. Technol. 2021, 39, 4535–4541. [Google Scholar] [CrossRef]
- Kim, J.; Suh, Y.; Lee, J.; Chae, H.; Ahn, H.; Chung, Y.; Park, D. EmbeddedPigCount: Pig Counting with Video Object Detection and Tracking on an Embedded Board. Sensors 2022, 22, 2689. [Google Scholar] [CrossRef]
- Huang, E.; Mao, A.; Ceballos, M.C.; Parsons, T.D.; Liu, K. Capacity limit of deep learning methods on scenarios of pigs in farrowing pen under occlusion. In Proceedings of the 2021 ASABE Annual International Virtual Meeting. American Society of Agricultural and Biological Engineers, Virtual, 12–16 July 2021; p. 1. [Google Scholar]
- Ahn, H.; Son, S.; Kim, H.; Lee, S.; Chung, Y.; Park, D. EnsemblePigDet: Ensemble Deep Learning for Accurate Pig Detection. Appl. Sci. 2021, 11, 5577. [Google Scholar] [CrossRef]
- Bo, Z.; Atif, O.; Lee, J.; Park, D.; Chung, Y. GAN-Based Video Denoising with Attention Mechanism for Field-Applicable Pig Detection System. Sensors 2022, 22, 3917. [Google Scholar] [CrossRef]
- Lei, K.; Zong, C.; Yang, T.; Peng, S.; Zhu, P.; Wang, H.; Teng, G.; Du, X. Detection and Analysis of Sow Targets Based on Image Vision. Agriculture 2022, 12, 73. [Google Scholar] [CrossRef]
- Ocepek, M.; Žnidar, A.; Lavrič, M.; Škorjanc, D.; Andersen, I.L. DigiPig: First Developments of an Automated Monitoring System for Body, Head and Tail Detection in Intensive Pig Farming. Agriculture 2022, 12, 2. [Google Scholar] [CrossRef]
- Ding, Q.A.; Chen, J.; Shen, M.X.; Liu, L.S. Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network. Comput. Electron. Agric. 2022, 194, 106741. [Google Scholar] [CrossRef]
- Wutke, M.; Heinrich, F.; Das, P.P.; Lange, A.; Gentz, M.; Traulsen, I.; Warns, F.K.; Schmitt, A.O.; Gültas, M. Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts. Sensors 2021, 21, 7512. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y. Multi-target pig tracking algorithm based on joint probability data association and particle filter. Int. J. Agric. Biol. Eng. 2021, 14, 199–207. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, H.; Cao, J.; Guo, X.; Su, J.; Wang, L.; Lu, S.; Li, L. Behavior Trajectory Tracking of Piglets Based on DLC-KPCA. Agriculture 2021, 11, 843. [Google Scholar] [CrossRef]
- He, H.; Qiao, Y.; Li, X.; Chen, C.; Zhang, X. Optimization on multi-object tracking and segmentation in pigs’ weight measurement. Comput. Electron. Agric. 2021, 186, 106190. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, W.; He, Q.; Xiang, H.; Li, D.; Wang, Y.; Chen, Y.; Liu, Y. Camshift tracking method based on correlation probability graph for model pig. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 108. [Google Scholar] [CrossRef]
- Liu, D.; Oczak, M.; Maschat, K.; Baumgartner, J.; Pletzer, B.; He, D.J.; Norton, T. A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs. Biosyst. Eng. 2020, 195, 27–41. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J.; Kim, H.T.; Kim, C.N.; Byeon, S.H. Association between pig activity and environmental factors in pig confinement buildings. Aust. J. Exp. Agric. 2008, 48, 680–686. [Google Scholar] [CrossRef]
- Xiao, D.; Feng, A.; Yang, Q.; Jian, L.; Zhang, Z. Fast Motion Detection for Pigs Based on Video Tracking. Trans. Chin. Soc. Agric. Mach. 2016, 47, 351–357. [Google Scholar]
- Gao, Y.; Yu, H.; Lei, M.; Li, X.; Guo, X.; Diao, Y. Trajectory tracking for group housed pigs based on locations of head/tail. Trans. Chin. Soc. Agric. Eng. 2017, 33, 220–226. [Google Scholar]
- Li, P.; Wang, D.; Wang, L.; Lu, H. Deep visual tracking: Review and experimental comparison. Pattern Recognit. 2018, 76, 323–338. [Google Scholar] [CrossRef]
- Kwon, T.; Yoon, J.; Heo, J.; Lee, W.; Kim, H. Tracing the breeding farm of domesticated pig using feature selection (Sus scrofa). Asian-Australas. J. Anim. Sci. 2017, 30, 1540. [Google Scholar] [CrossRef] [PubMed]
- Munappy, A.; Bosch, J.; Olsson, H.H.; Arpteg, A.; Brinne, B. Data management challenges for deep learning. In Proceedings of the IEEE 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Kallithea-Chalkidiki, Greece, 28–30 August 2019; pp. 140–147. [Google Scholar]
- Meng, L.; Yang, X. A Survey of Object Tracking Algorithms. Acta Autom. Sin. 2019, 1244–1260. [Google Scholar]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar] [CrossRef]
- Chen, C.P.J.; Morota, G.; Lee, K.; Zhang, Z.; Cheng, H. VTag: A semi-supervised pipeline for tracking pig activity with a single top-view camera. J. Anim. Sci. 2022, 100, skac147. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.J. Chapter 1—Overview of commercial pig production systems and their main welfare challenges. In Advances in Pig Welfare; Špinka, M., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2018; pp. 3–25. [Google Scholar] [CrossRef]
- Fernandes, J.N.; Hemsworth, P.H.; Coleman, G.J.; Tilbrook, A.J. Costs and Benefits of Improving Farm Animal Welfare. Agriculture 2021, 11, 104. [Google Scholar] [CrossRef]
- Yang, Q.M.; Xiao, D.Q. A review of video-based pig behavior recognition. Appl. Anim. Behav. Sci. 2020, 233, 8. [Google Scholar] [CrossRef]
- Zhu, W.X.; Guo, Y.Z.; Jiao, P.P.; Ma, C.H.; Chen, C. Recognition and drinking behaviour analysis of individual pigs based on machine vision. Livest. Sci. 2017, 205, 129–136. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.X.; Steibel, J.; Siegford, J.; Han, J.J.; Norton, T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosyst. Eng. 2020, 196, 1–14. [Google Scholar] [CrossRef]
- Maselyne, J.; Saeys, W.; Van Nuffel, A.; De Ketelaere, B.; Mertens, K.; Millet, S.; Gregersen, T.; Brizzi, P.; Hessel, E. A health monitoring system for growing-finishing pigs based on the individual feeding pattern using radio frequency identification and synergistic control. In Proceedings of the European Conference on Precision Livestock Farming ‘13 (ECPLF), Leuven, Belgium, 10–12 September 2013; Eigenverlag: Leuven, Belgium, 2013; pp. 825–833. [Google Scholar]
- Maselyne, J.; Adriaens, I.; Huybrechts, T.; De Ketelaere, B.; Millet, S.; Vangeyte, J.; Van Nuffel, A.; Saeys, W. Assessing the drinking behaviour of individual pigs using RFID registrations. In Precision Livestock Farming Applications: Making Sense of Sensors to Support Farm Management; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 209–216. [Google Scholar]
- Maselyne, J.; Adriaens, I.; Huybrechts, T.; De Ketelaere, B.; Millet, S.; Vangeyte, J.; Van Nuffel, A.; Saeys, W. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal 2016, 10, 1557–1566. [Google Scholar] [CrossRef]
- Brown-Brandl, T.; Adrion, F.; Gallmann, E.; Eigenberg, R. Development and validation of a low-frequency RFID system for monitoring grow-finish pig feeding and drinking behavior. In Proceedings of the 10th International Livestock Environment Symposium (ILES X), American Society of Agricultural and Biological Engineers, Omaha, NE, USA, 25–27 September 2018; p. 1. [Google Scholar]
- Zin, T.T.; Phyo, C.N.; Tin, P.; Hama, H.; Kobayashi, I. Image technology based cow identification system using deep learning. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 14–16 March 2018; Volume 1, pp. 236–247. [Google Scholar]
- Kashiha, M.; Bahr, C.; Haredasht, S.A.; Ott, S.; Moons, C.P.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. The automatic monitoring of pigs water use by cameras. Comput. Electron. Agric. 2013, 90, 164–169. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, D.; Zhang, G. Automatic pig drinking behavior recognition with machine vision. Trans. Chin. Soc. Agric. Mach. 2018, 49, 232–238. [Google Scholar]
- Gan, H.; Ou, M.; Huang, E.; Xu, C.; Li, S.; Li, J.; Liu, K.; Xue, Y. Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features. Comput. Electron. Agric. 2021, 188, 106357. [Google Scholar] [CrossRef]
- D’Eath, R.B.; Foister, S.; Jack, M.; Bowers, N.; Zhu, Q.; Barclay, D.; Baxter, E.M. Changes in tail posture detected by a 3D machine vision system are associated with injury from damaging behaviours and ill health on commercial pig farms. PLoS ONE 2021, 16, e0258895. [Google Scholar] [CrossRef]
- Gan, H.; Li, S.; Ou, M.; Yang, X.; Huang, B.; Liu, K.; Xue, Y. Fast and accurate detection of lactating sow nursing behavior with CNN-based optical flow and features. Comput. Electron. Agric. 2021, 189, 106384. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Duan, Q. Identification of sow estrus behavior based on MFO-LSTM. Trans. Chin. Soc. Agric. Eng. 2020, 36. [Google Scholar]
- Zhuang, Y.; Yu, J.; Teng, G.; Cao, M. Recognition method of large white sow oestrus behavior based on convolutional neural network. Trans. Chin. Soc. Agric. Mach. 2020, 51, 364–370. [Google Scholar]
- Chen, C.; Zhu, W.X.; Steibel, J.; Siegford, J.; Wurtz, K.; Han, J.J.; Norton, T. Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory. Comput. Electron. Agric. 2020, 169, 105166. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, X.F.; Zhu, X.M.; Chen, C.X.; Wang, L.N.; Tu, S.Q.; Yang, A.; Xue, Y.J. Automatic posture change analysis of lactating sows by action localisation and tube optimisation from untrimmed depth videos. Biosyst. Eng. 2020, 194, 227–250. [Google Scholar] [CrossRef]
- Li, D.; Zhang, K.F.; Li, Z.B.; Chen, Y.F. A Spatiotemporal Convolutional Network for Multi-Behavior Recognition of Pigs. Sensors 2020, 20, 2381. [Google Scholar] [CrossRef]
- Zhang, K.F.; Li, D.; Huang, J.Y.; Chen, Y.F. Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks. Sensors 2020, 20, 1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alameer, A.; Kyriazakis, I.; Bacardit, J. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs. Sci. Rep. 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhu, W.X.; Steibel, J.; Siegford, J.; Han, J.J.; Norton, T. Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method. Comput. Electron. Agric. 2020, 176, 105642. [Google Scholar] [CrossRef]
- Li, D.; Zhang, K.; Li, X.; Chen, Y.; Li, Z.; Pu, D. Mounting behavior recognition for pigs based on Mask R-CNN. Trans. Chin. Soc. Agric. Mach. 2019, 50, 261–266. [Google Scholar]
- Gao, Y.; Chen, B.; Liao, H.; Lei, M.; Li, X.; Li, J.; Luo, J. Deep learning identification method for aggressive behavior of pig herds. Trans. Chin. Soc. Agric. Eng. 2019, 35, 192–200. [Google Scholar]
- Xue, Y.; Zhu, X.; Zheng, C.; Mao, L.; Yang, A.; Tu, S.; Huang, N.; Yang, X.; Chen, P.; Zhang, N. Suckling sows posture recognition based on improved Faster R-CNN in depth video image. Trans. Chin. Soc. Agric. Eng. 2018, 34, 189–196. [Google Scholar]
- Nasirahmadi, A.; Hensel, O.; Edwards, S.A.; Sturm, B. Automatic detection of mounting behaviours among pigs using image analysis. Comput. Electron. Agric. 2016, 124, 295–302. [Google Scholar] [CrossRef]
- Whittemore, C. Nutrition reproduction interactions in primiparous sows. Livest. Prod. Sci. 1996, 46, 65–83. [Google Scholar] [CrossRef]
- Tur, I. General reproductive properties in pigs. Turk. J. Vet. Anim. Sci. 2013, 37, 1–5. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, D.; Cai, J. Pig mounting behaviour recognition based on video spatial–temporal features. Biosyst. Eng. 2021, 206, 55–66. [Google Scholar] [CrossRef]
- Viazzi, S.; Ismayilova, G.; Oczak, M.; Sonoda, L.T.; Fels, M.; Guarino, M.; Vranken, E.; Hartung, J.; Bahr, C.; Berckmans, D. Image feature extraction for classification of aggressive interactions among pigs. Comput. Electron. Agric. 2014, 104, 57–62. [Google Scholar] [CrossRef]
- Lee, J.; Jin, L.; Park, D.; Chung, Y. Automatic recognition of aggressive behavior in pigs using a kinect depth sensor. Sensors 2016, 16, 631. [Google Scholar] [CrossRef]
- Oczak, M.; Viazzi, S.; Ismayilova, G.; Sonoda, L.T.; Roulston, N.; Fels, M.; Bahr, C.; Hartung, J.; Guarino, M.; Berckmans, D. Classification of aggressive behaviour in pigs by activity index and multilayer feed forward neural network. Biosyst. Eng. 2014, 119, 89–97. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Ma, C.; Guo, Y.; Huang, W.; Ruan, C. Image motion feature extraction for recognition of aggressive behaviors among group-housed pigs. Comput. Electron. Agric. 2017, 142, 380–387. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Liu, D.; Steibel, J.; Siegford, J.; Wurtz, K.; Han, J.; Norton, T. Detection of aggressive behaviours in pigs using a RealSence depth sensor. Comput. Electron. Agric. 2019, 166, 105003. [Google Scholar] [CrossRef]
- Yang, A.; Huang, H.; Zhu, X.; Yang, X.; Chen, P.; Li, S.; Xue, Y. Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features. Biosyst. Eng. 2018, 175, 133–145. [Google Scholar] [CrossRef]
- Yuan, D.; Zhu, X.; Li, X. Gesture recognition of pig based on Zernikemoments and support vector machines. Inf. Technol. 2015, 39, 93–96. [Google Scholar]
- Choi, Y.K.; Goyal, S.M.; Joo, H.S. Retrospective analysis of etiologic agents associated with respiratory diseases in pigs. Can. Vet. J. 2003, 44, 735. [Google Scholar]
- Ayrle, H.; Mevissen, M.; Kaske, M.; Nathues, H.; Gruetzner, N.; Melzig, M.; Walkenhorst, M. Medicinal plants–prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review. BMC Vet. Res. 2016, 12, 1–31. [Google Scholar] [CrossRef]
- Moshou, D.; Chedad, A.; Van Hirtum, A.; De Baerdemaeker, J.; Berckmans, D.; Ramon, H. Neural recognition system for swine cough. Math. Comput. Simul. 2001, 56, 475–487. [Google Scholar] [CrossRef]
- Van Hirtum, A.; Berckmans, D. Fuzzy approach for improved recognition of citric acid induced piglet coughing from continuous registration. J. Sound Vib. 2003, 266, 677–686. [Google Scholar] [CrossRef]
- Ferrari, S.; Silva, M.; Guarino, M.; Aerts, J.M.; Berckmans, D. Cough sound analysis to identify respiratory infection in pigs. Comput. Electron. Agric. 2008, 64, 318–325. [Google Scholar] [CrossRef]
- Cang, Y.; Luo, S.; Qiao, Y. Pig sound classification based on deep neural network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 195–204. [Google Scholar]
- Dong, H.; Liu, Z.; Ma, H.; Yan, J. Application of speech enhancement in noise-reduction from cough ing pigs. J. Shanxi Agric. Univ. Sci. Ed. 2017, 37, 831–836. [Google Scholar]
- Yan, L.; Shen, M.; Liu, L.; Sun, X.; Yao, W.; Xu, Y. Denoising method of log Energy entropy quadratic wavelet packet in sows’ lactating vocalization. Trans. Chin. Soc. Agric. Mach. 2015, 46, 330–336. [Google Scholar]
- Yan, L.; Shao, Q.; Wu, X.; Xie, Q.; Sun, X.; Wei, C. Feature extraction and classification based on skewness clustering algorithm for lactating sow. Trans. Chin. Soc. Agric. Mach. 2016, 47, 300–306. [Google Scholar]
- Huidong, M.; Zhenyu, L. Application of end point detection in pig cough signal detection. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2016, 36, 445–449. [Google Scholar]
- Guarino, M.; Jans, P.; Costa, A.; Aerts, J.M.; Berckmans, D. Field test of algorithm for automatic cough detection in pig houses. Comput. Electron. Agric. 2008, 62, 22–28. [Google Scholar]
- Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Analysis of cough sounds for diagnosis of respiratory infections in intensive pig farming. Trans. ASABE 2008, 51, 1051–1055. [Google Scholar] [CrossRef]
- Exadaktylos, V.; Silva, M.; Aerts, J.M.; Taylor, C.J.; Berckmans, D. Real-time recognition of sick pig cough sounds. Comput. Electron. Agric. 2008, 63, 207–214. [Google Scholar]
- Chung, Y.; Oh, S.; Lee, J.; Park, D.; Chang, H.H.; Kim, S. Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems. Sensors 2013, 13, 12929–12942. [Google Scholar] [CrossRef]
- Cordeiro, A.F.D.; Naas, I.D.; Leitao, F.D.; de Almeida, A.C.M.; de Moura, D.J. Use of vocalisation to identify sex, age, and distress in pig production. Biosyst. Eng. 2018, 173, 57–63. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, L.; Zheng, S.; Xiong, B. Advances in the development and applications of intelligent equipment and feeding technology for livestock production. Smart Agric. 2019, 1, 20. [Google Scholar]
- Kemp, R.; Nijhoff-Savvaki, R.; Ruitenburg, R.; Trienekens, J.; Omta, S. Sustainability-related innovation adoption: The case of the Dutch pig farmer. J. Chain Netw. Sci. 2014, 14, 69–78. [Google Scholar] [CrossRef]
- Huang, C. Exploration of Weak Links in Biosecurity of Small and Medium-Sized Pig Farms and Improvement Countermeasures; South China Agriculture: Guangzhou, China, 2020. [Google Scholar]
- Bello, R.W.; Mohamed, A.; Talib, A. Smart Animal Husbandry: A Review of Its Data, Applications, Techniques, Challenges and Opportunities. Available online: https://ssrn.com/abstract=4103776 (accessed on 8 May 2022).
- Doeschl-Wilson, A.B.; Whittemore, C.T.; Knap, P.W.; Schofield, C.P. Using visual image analysis to describe pig growth in terms of size and shape. Anim. Sci. 2004, 79, 415–427. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, P.; Pedersen, L.J. Overview of commercial pig production systems and their main welfare challenges. Anim. Sci. Abroad (Pigs Poultry) 2019, 39, 1. [Google Scholar]
- Pazmiño, M.L.; Ramirez, A.D. Life cycle assessment as a methodological framework for the evaluation of the environmental sustainability of pig and pork production in Ecuador. Sustainability 2021, 13, 11693. [Google Scholar] [CrossRef]
- Xia, X.; Shi, X.; Chai, X. Thinking and Practice of Intelligent Cow Breeding Driven by Artificial Intelligence; China Dairy: Hong Kong, China, 2021; pp. 5–9. [Google Scholar]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Qiao, Y.; Kong, H.; Clark, C.; Lomax, S.; Su, D.; Eiffert, S.; Sukkarieh, S. Intelligent Perception-Based Cattle Lameness Detection and Behaviour Recognition: A Review. Animals 2021, 11, 3033. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.E.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
Authors, Year | Dataset Size (Images Number) | Method | Breed | Result |
---|---|---|---|---|
Zhao et al., 2022 [91] | 18,000 | Mask R-CNN and GAN | - | Average Precision = 90.6% |
Lei et al., 2022 [92] | 416,873 | U-Net and UNet-Attention | Yorkshire pig | Average Precision = 94.80% |
Ocepek et al., 2022 [93] | 583 | Mask R-CNN and YOLOv4 | Crossbred Norsvin Land-race × York-shire sow in-seminated with Duroc boar semen | Precision = 96.00% |
Ding et al., 2022 [94] | 5000 | YOLOv5 and FD-CNN | Pregnant Large White sow | Precision = 93.60% |
Wutke et al., 2021 [95] | 12,285 | CNN and KF | - | MOTA = 94.40% |
Sun and Li., 2021 [96] | - | A multi-object tracking algorithm, which based on joint probability data association and particle | - | Correct tracking rate = 99.00% |
Van Der Zande et al., 2021 [76] | 4000 | YOLOv3 and SORT | Crossbred pig | mAP = 99.70% |
Sha et al., 2021 [87] | 5988 | YOLOv3 | - | - |
Liu et al., 2021 [97] | 5000 | ResNet-50 and DLC-KPCA | Weaned Yorkshire piglets | Accuracy = 96.88% |
Jung et al., 2021 [85] | 2182 | Faster R-CNN and OCTA | - | Accuracy = 77.00% |
He et al., 2021 [98] | 1400 | Mask R-CNN and Track R-CNN | - | MOTSA = 94.90% |
Gan et al., 2021 [86] | 100 video clips | Faster R-CNN and OPTN | Meihua sow | MOTA = 97.04% |
Zhang et al., 2020 [99] | 425 GB | CamTracor-PG | - | The average overlap rate = 91.00% |
Liu et al., 2020 [100] | 320 | SSD + ResNet-50 and MTU | (Landrace × Large White) × Piétrain crossbreds | Precision = 96.38% |
Chen et al., 2020 [65] | 51 video clips | Bottom-up keypoints detection CNN architecture and STRF | - | mAP = 84.30% |
Chen et al., 2020 [77] | 15,000 | YOLACT | Landrace × Yorshire crossbred pig | Accuracy = 90.00% |
Zhang et al., 2019 [74] | 18,000 | SSD and Correlation Filter | Large White × Landrace breed | Precision = 94.72% |
Cowton et al., 2019 [75] | 3292 | Faster R-CNN, SORT and Deep SORT | - | mAP = 90.10% |
Authors, Year | Data Type | Behavior | Method | Breed | Accuracy |
---|---|---|---|---|---|
Riekert et al., 2021 [55] | 2D | Lying | Faster R-CNN, NASNet | Pig (GermanHybrid × German Piétrain) | 84.00% |
Gan et al., 2021 [122] | 2D | Snout-snout and snout-body social nosing, snout-snout and snout-body aggressive/ playing behavior | ResNet-101 | Meihua sow | 93.09% |
D’Eath et al., 2021 [123] | 3D | Scratched tails | Linear mixed models | Grower/finisher pig | - |
Gan et al., 2021 [124] | 3D | Nursing | ResNet-50, FlowNet2.0 | Meihua sow | 97.63% |
Ji et al., 2020 [54] | 2D | Eating and drinking | YOLOv2 | Yorkshi sow | 94.59% |
Chen et al., 2020 [114] | 2D | Drinking | ResNet-50 + LSTM | Mixed nursery pig | 92.50% |
Wang et al., 2020 [125] | 2D | Estrus | MFO-LSTM | Landrace pig | 98.02% |
Zhuang et al., 2020 [126] | 3D | Estrus | AlexNet | Large white sow | 93.33% |
Chen et al., 2020 [127] | 2D | Aggressive | VGG16 + LSTM | Mixed nursery pig | 98.40% |
Zheng et al., 2020 [128] | 3D | Walking, keep standing, keep sitting, keep ventral recumbency behavior et al. | Fast R-CNN and HMM | Small-ears spotted pig | 92.70% |
Riekert et al., 2020 [53] | 2D | Lying | Faster R-CNN + NAS | Fattening pig | 80.20% |
Li et al., 2020 [129] | 3D | Feeding, lying, motoring, scratching and mounting behavior | PMB-SCN | Fragrance pig | 97.63% |
Zhang et al., 2020 [130] | 3D | Feeding, lying, walking, scratching and mounting behavior | TSCNM | Fragrance pig | 98.99% |
Alameer et al., 2020 [131] | 2D | Nursing | SVM | Sow pig | 96.40% |
Chen et al., 2020 [132] | 2D | Feeding | Xception + LSTM | Mixed nursery pig | 98.40% |
Li et al., 2019 [49] | 2D | Mounting | Mask R-CNN and KELM | Minipigs pig | 91.47% |
Li et al., 2019 [133] | 2D | Mounting | Mask R-CNN and ResNet-FPN | - | 94.50% |
gao et al., 2019 [134] | 3D | Aggressive | 3D CONVNet | - | 96.78% |
Tan et al., 2018 [48] | 2D | Drinking | Douglas-Peukcer | - | 93.75% |
Yang et al., 2018 [121] | 2D | Drinking | Google Lenet | - | 92.11% |
Xue et al., 2018 [135] | 3D | Standing, sitting, prone and side lying behavior | Faster R-CNN, ZF-D2R | Sow | 96.73% |
Authors, Year | Sound Category | Method | Breed | Result |
---|---|---|---|---|
Yin et al., 2021 [69] | Cough | AlexNet | - | Accuracy = 95.40% |
Chen et al., 2021 [63] | Estrus sound | VGG16, DTL-CNN | Sow | Accuracy = 96.62% |
Zhao et al., 2020 [62] | Cough | DNN-HMM | Landrace pig | Average WER = 8.03% |
Shen et al., 2020 [61] | Cough | MFCC-CNN | - | Accuracy = 97.72% |
Hong et al., 2020 [64] | Cough, grunt, scream | MnasNet | Pig (Yorkshire, Landrace, and Duroc) | Accuracy = 94.70% |
Li et al., 2020 [60] | Cough | SVDD | - | Accuracy = 93.70% |
Cang et al., 2020 [152] | Cough, sneeze, hunger, choking, and screams | MobileNetV2 | Three-way sow | Accuracy = 97.30% |
Zhang et al., 2019 [59] | Cough, sneeze, hunger, choking, and screams | SVDD, BPNN | - | Accuracy = 95.40% |
Wang et al., 2019 [58] | Cough | PCA, SVM | Landrace weaners | Accuracy = 95.00% |
Li et al., 2019 [57] | Cough | BLSTM-CTC | Landrace | Accuracy = 93.77% |
Cordeiro et al., 2018 [161] | Pig vocalization | decision-tree | Sow | Accuracy = 81.92% |
Li et al., 2018 [56] | Cough | PCA, DBN | Landrace | Accuracy = 94.29% |
Dong et al., 2017 [153] | Cough, wind noise | DCT | - | - |
Hui et al., 2016 [156] | Cough | - | - | Accuracy = 96.00% |
Yan et al., 2016 [155] | Nursing grunt, drinking, feeding and sham chewing | The sub-band clustering method based on skewness and SVM | - | Accuracy = 95.17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S.; Lin, H.; Sun, Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors 2022, 22, 6541. https://doi.org/10.3390/s22176541
Wang S, Jiang H, Qiao Y, Jiang S, Lin H, Sun Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors. 2022; 22(17):6541. https://doi.org/10.3390/s22176541
Chicago/Turabian StyleWang, Shunli, Honghua Jiang, Yongliang Qiao, Shuzhen Jiang, Huaiqin Lin, and Qian Sun. 2022. "The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming" Sensors 22, no. 17: 6541. https://doi.org/10.3390/s22176541
APA StyleWang, S., Jiang, H., Qiao, Y., Jiang, S., Lin, H., & Sun, Q. (2022). The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors, 22(17), 6541. https://doi.org/10.3390/s22176541