Adaptive Lag Smoother for State Estimation
Abstract
:1. Introduction
2. Fixed-Lag Smoother and Its Dynamic Error
3. Adaptive Lag Selection Mechanism
4. Simulation Results
4.1. Second-Order Newtonian System
4.2. Single-Axis Attitude Estimation
4.3. Van der Pol Oscillator
4.4. Three-Axis Attitude Estimation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
System state at time instant | |
State transition matrix at time instant | |
Measurement at time instant | |
Measurement output matrix at time instant | |
Process noise at time instant | |
Measurement noise at time instant | |
Smoother gain matrix at time instant | |
Error covariance matrix for smoother at | |
Process noise covariance matrix at time instant | |
Measurement noise covariance matrix at time instant | |
Kalman gain matrix at time instant | |
Error covariance of lag at time instant | |
Adaptive lag | |
q | Attitude parameterized by quaternion |
Gyroscope measurement corrupted by bias, b and noise |
References
- Munguía, R.; Urzua, S.; Grau, A. EKF-based parameter identification of multi-rotor unmanned aerial vehiclesmodels. Sensors 2019, 19, 4174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.W.; Hao, G.; Sun, S.L. Weighted Measurement Fusion Particle Filter for Nonlinear Systems with Correlated Noises. Sensors 2018, 18, 3242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Zhang, Y.; Shi, P.; Wu, Z.; Qian, J.; Chambers, J.A. Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 2082–2096. [Google Scholar] [CrossRef]
- Goodman, J.M.; Wilkerson, S.A.; Eggleton, C.; Gadsden, S.A. A multiple model adaptive SVSF-KF estimation strategy. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII, Orlando, FL, USA, 16–19 April 2018; Volume 11018, pp. 462–473. [Google Scholar]
- Habibi, S. The smooth variable structure filter. Proc. IEEE 2007, 95, 1026–1059. [Google Scholar] [CrossRef]
- Crassidis, J.L.; Junkins, J.L. Optimal Estimation of Dynamic Systems; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Moore, J. Fixed-lag smoothing results for linear dynamical systems. Aust. Telecommun. Res. 1973, 7, 16–21. [Google Scholar]
- Meditch, J.S. Stochastic Optimal Linear Estimation and Control; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Chirarattananon, S.; Anderson, B. Stable fixed-lag smoothing of continuous time processes. IEEE Trans. Inf. Theory 1974, 20, 25–36. [Google Scholar] [CrossRef]
- Kim, P.S. A computationally efficient fixed-lag smoother using recent finite measurements. Measurement 2013, 46, 846–850. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Yan, B.; Li, C. A novel smooth variable structure smoother for robust estimation. Sensors 2020, 20, 1781. [Google Scholar] [CrossRef] [Green Version]
- Alenlöv, J.; Olsson, J. Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models. IEEE Trans. Signal Process. 2019, 67, 5571–5582. [Google Scholar] [CrossRef] [Green Version]
- Fkirin, M.A. Fixed-lag smoothing in the identification of time-varying systems with unknown dead time. Int. J. Syst. Sci. 1985, 16, 1313–1334. [Google Scholar] [CrossRef]
- Leanza, A.; Reina, G.; Blanco-Claraco, J.L. A Factor-Graph-Based Approach to Vehicle Sideslip Angle Estimation. Sensors 2021, 21, 5409. [Google Scholar] [CrossRef]
- Bolotin, Y.V.; Yurist, S.S. Suboptimal smoothing filter for the marine gravimeter GT-2M. Gyroscopy Navig. 2011, 2, 152–155. [Google Scholar] [CrossRef]
- Stepanov, O.; Koshaev, D. Analysis of filtering and smoothing techniques as applied to aerogravimetry. Gyroscopy Navig. 2010, 1, 19–25. [Google Scholar] [CrossRef]
- Noriega, G.; Pasupathy, S. Application of Kalman filtering to real-time preprocessing of geophysical data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 897–910. [Google Scholar] [CrossRef]
- Xu, Y.; Shmaliy, Y.S.; Ahn, C.K.; Shen, T.; Zhuang, Y. Tightly Coupled Integration of INS and UWB Using Fixed-Lag Extended UFIR Smoothing for Quadrotor Localization. IEEE Internet Things J. 2021, 8, 1716–1727. [Google Scholar] [CrossRef]
- Hsiung, J.; Hsiao, M.; Westman, E.; Valencia, R.; Kaess, M. Information Sparsification in Visual-Inertial Odometry. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1146–1153. [Google Scholar] [CrossRef]
- Fetzer, T.; Ebner, F.; Deinzer, F.; Köping, L.; Grzegorzek, M. On Monte Carlo smoothing in multi sensor indoor localisation. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Madrid, Spain, 4–7 October 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wang, Q.; Li, Y.; Gao, Z.; Zhou, B.; Qi, L.; Yang, J.; Chen, R.; El-Sheimy, N. The Integration of Photodiode and Camera for Visible Light Positioning by Using Fixed-Lag Ensemble Kalman Smoother. Remote Sens. 2019, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.S. Finite Memory Structure Filtering and Smoothing for Target Tracking in Wireless Network Environments. Appl. Sci. 2019, 9, 2872. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Qureshi, M.B.; Khan, U.; Memon, S.A.; Shi, Y.; Peng, D. Multisensor-based target-tracking algorithm with out-of-sequence-measurements in cluttered environments. Sensors 2018, 18, 4043. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Han, C.Z.; Zhu, H.Y. A new smoothing approach with diverse fixed-lags based on target motion model. Int. J. Autom. Comput. 2006, 3, 425–430. [Google Scholar] [CrossRef]
- Duong, T.T.; Chiang, K.W.; Le, D.T. On-line smoothing and error modelling for integration of GNSS and visual odometry. Sensors 2019, 19, 5259. [Google Scholar] [CrossRef] [Green Version]
- Hartikainen, J.; Särkkä, S. Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing, Kittila, Finland, 29 August–1 September 2010; pp. 379–384. [Google Scholar] [CrossRef]
- Martino, L.; Read, J. A joint introduction to Gaussian Processes and Relevance Vector Machines with connections to Kalman filtering and other kernel smoothers. Inf. Fusion 2021, 74, 17–38. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Rhudy, M.B.; Gu, Y. Online Stochastic Convergence Analysis of the Kalman Filter. Int. J. Stoch. Anal. 2013, 2013, 240295. [Google Scholar] [CrossRef] [Green Version]
- Reif, K.; Gunther, S.; Yaz, E.; Unbehauen, R. Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Autom. Control 1999, 44, 714–728. [Google Scholar] [CrossRef]
- Shuster, M.D. A Survey of Attitude Representations. J. Astronaut. Sci. 1993, 41, 439–517. [Google Scholar]
- Lefferts, E.J.; Markley, F.L.; Shuster, M.D. Kalman Filtering for Spacecraft Attitude Estimation. J. Guid. Control. Dyn. 1982, 5, 417–429. [Google Scholar] [CrossRef]
- Andrle, M.S.; Crassidis, J.L. Attitude estimation employing common frame error representations. J. Guid. Control. Dyn. 2015, 38, 1614–1624. [Google Scholar] [CrossRef]
- Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Dynamics and Control; Springer: New York, NY, USA, 2014. [Google Scholar]
Acc. Noise | Meas. Noise | % Improvement | |
---|---|---|---|
2 | 4 | 90.32 | 67 |
10 | 4 | 99.06 | 34 |
2 | 10 | 92.03 | 99 |
10 | 10 | 99.37 | 50 |
(rad) | (rad/s) | (rad/s) | % Improvement | |
---|---|---|---|---|
99.87 | 3 | |||
99.39 | 25 | |||
99.51 | 25 | |||
99.91 | 3 |
Proc. Noise | Meas. Noise | % Improvement | |
---|---|---|---|
0.2 | 0.01 | 99.52 | [15–24] |
0.05 | 0.01 | 99.41 | [20–34] |
0.2 | 0.05 | 98.33 | [29–35] |
0.05 | 0.05 | 98.78 | [38–53] |
(rad) | (rad/s) | (rad/s) | % Improvement | |
---|---|---|---|---|
99.33 | 6 | |||
99.12 | 7 | |||
99.33 | 25 | |||
99.12 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poddar, S.; Crassidis, J.L. Adaptive Lag Smoother for State Estimation. Sensors 2022, 22, 5310. https://doi.org/10.3390/s22145310
Poddar S, Crassidis JL. Adaptive Lag Smoother for State Estimation. Sensors. 2022; 22(14):5310. https://doi.org/10.3390/s22145310
Chicago/Turabian StylePoddar, Shashi, and John L. Crassidis. 2022. "Adaptive Lag Smoother for State Estimation" Sensors 22, no. 14: 5310. https://doi.org/10.3390/s22145310
APA StylePoddar, S., & Crassidis, J. L. (2022). Adaptive Lag Smoother for State Estimation. Sensors, 22(14), 5310. https://doi.org/10.3390/s22145310