Optimal Rotational Angular Velocity Determination Method Based on Compound Rotary Semi-Strapdown Inertial Navigation System
Abstract
:1. Introduction
2. Principle of RSSINS
2.1. Condition of Complete Modulation
2.2. Residual Error Model of Compound RSSINS
2.2.1. Bias Error
2.2.2. Scale Factor Error
2.2.3. Installation Error
2.3. Error Transfer Model for Compound RSSINS
3. Optimal Rotation Angular Velocity Determination Method (K-Value Method)
3.1. Modulation Incomplete Error of RSSINS
3.1.1. The Modulation Incomplete Error of Angular Velocity
3.1.2. The Modulation Incomplete Error of Acceleration
3.2. Optimal Rotation Angle Velocity Determination Method
4. Simulation and Experimentation
4.1. Rotation Schemes for Different K
4.1.1. Stationary State
4.1.2. Yaw Motion State
4.1.3. Acceleration and Deceleration Motion State
4.2. Rotation Schemes for the Same K
4.3. Simulation of Rotation Scheme in Missile Environment
5. Conclusions
- 1.
- To explore whether the angular velocity of the rotating platforms causes the introduction of an extra error term in CRM, the propagation form of the constant error was re-modeled. The results show that the ratio of the rotational angular velocities of the two rotating platforms is the only factor that affects the accuracy of the navigation results, provided that is certain.
- 2.
- In order to study the influence of K changes on error dispersion, CRM with different K was designed for three motion states. It can be found that when the value range of K is , the error dispersion is serious and there is great uncertainty in the error variation. Under the condition of K = 2 and K = 3, the best error suppression effect is achieved.
- 3.
- Six sets of rotational modulation schemes with the same K but different rotational angular velocities were designed in order to investigate whether the different rotation modulation angular velocities affect the error suppression effect. Analyzing the simulation results, it can be found that when the modulation angle velocity is lower than 20 , the larger the modulation angular velocity is, the smaller the error amplitude in the complete cycle. When the modulation angular velocity exceeds 20 , the effect of the rotation modulation angular velocity size on the error suppression effect is not obvious under the same K.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Wang, Y.; Zhu, L.; Yang, F. Design of a Projectile-Borne Data Recorder Triggered by Overload. Electronics 2020, 9, 860. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, T. Research on In-Flight Alignment for Micro Inertial Navigation System Based on Changing Acceleration using Exponential Function. Micromachines 2019, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, K.; Li, J.; Zhang, D.; Wei, X.; Yin, J. Robust Central Difference Kalman Filter with Mixture Correntropy: A Case Study for Integrated Navigation. IEEE Access 2021, 9, 80772–80786. [Google Scholar] [CrossRef]
- Sun, L.; Yi, W.; Yuan, D.; Guan, J. Application of Elman Neural Network Based on Genetic Algorithm in Initial Alignment of SINS for Guided Projectile. Math. Probl. Eng. 2019, 2019, 5810174. [Google Scholar] [CrossRef]
- Chen, G.; Li, K.; Wang, W.; Li, P. A novel redundant INS based on triple rotary inertial measurement units. Meas. Sci. Technol. 2016, 27, 105102. [Google Scholar] [CrossRef]
- Du, S. A micro-electro-mechanical-system-based inertial system with rotating accelerometers and gyroscopes for land vehicle navigation. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717746351. [Google Scholar] [CrossRef]
- Mi, J.; Li, J.; Zhang, X.; Feng, K.; Hu, C.; Wei, X.; Yuan, X. Roll Angular Rate Measurement for High Spinning Projectiles Based on Redundant Gyroscope System. Micromachines 2020, 11, 940. [Google Scholar] [CrossRef]
- Ge, B.S.; Zhang, H.; Fu, W.X.; Yang, J.B. Enhanced Redundant Measurement-Based Kalman Filter for Measurement Noise Covariance Estimation in INS/GNSS Integration. Remote Sens. 2020, 12, 3500. [Google Scholar] [CrossRef]
- Nazemipour, A.; Manzuri, M.T.; Kamran, D.; Karimian, M. MEMS Gyro Bias Estimation in Accelerated Motions Using Sensor Fusion of Camera and Angular-Rate Gyroscope. IEEE Trans. Veh. Technol. 2020, 69, 3841–3851. [Google Scholar] [CrossRef]
- de Celis, R.; Cadarso, L. Hybridized attitude determination techniques to improve ballistic projectile navigation, guidance and control. Aerosp. Sci. Technol. 2018, 77, 138–148. [Google Scholar] [CrossRef]
- Duan, X.-M.; Cao, H. Stabilized Inertial Guidance Solution for Rolling Projectile Based on Partial Strapdown Platform. IEEE Access 2021, 9, 116207–116214. [Google Scholar] [CrossRef]
- Sharma, Y.R.; Ratnoo, A. Guidance law for mimicking short-range ballistic trajectories. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 4176–4190. [Google Scholar] [CrossRef]
- Bai, S.Y.; Lai, J.Z.; Lyu, P.; Xu, X.W.; Liu, M.; Huang, K. A System-Level Self-Calibration Method for Installation Errors in A Dual-Axis Rotational Inertial Navigation System. Sensors 2019, 19, 4005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, S.; Sun, W.; Gao, Y. MEMS IMU Error Mitigation Using Rotation Modulation Technique. Sensors 2016, 16, 2017. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Wang, L. Online self-calibration research of single-axis rotational inertial navigation system. Measurement 2018, 129, 633–641. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zheng, W.; Li, Z.W. Optimizing Matching Area for Underwater Gravity-Aided Inertial Navigation Based on the Convolution Slop Parameter-Support Vector Machine Combined Method. Remote Sens. 2021, 13, 3940. [Google Scholar] [CrossRef]
- Cai, Q.Z.; Yang, G.L.; Song, N.F.; Wang, L.F.; Yin, H.L.; Liu, Y.L. Online Calibration of the Geographic-Frame-Equivalent Gyro Bias in Dual-Axis RINS. IEEE Trans. Instrum. Meas. 2018, 67, 1609–1616. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Z.; Weng, H.; Zhao, X. Self-Calibration of Tri-Axis Rotational Inertial Navigation System Based on Virtual Platform. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Song, T.X.; Wang, X.Y.; Liang, W.W.; Xing, L. Improved motor control method with measurements of fiber optics gyro (FOG) for dual-axis rotational inertial navigation system (RINS). Opt. Express 2018, 26, 13072–13084. [Google Scholar] [CrossRef]
- Yin, H.L.; Yang, G.L.; Song, N.F.; Jiang, R.; Wang, Y.Y. Error Modulation Scheme Analyzing for Dual-Axis Rotating Fiber-Optic Gyro Inertial Navigation System. Sens. Lett. 2012, 10, 1361–1365. [Google Scholar] [CrossRef]
- Sun, W.; Gao, Y. Fiber-based rotary strapdown inertial navigation system. Opt. Eng. 2013, 52, 076106. [Google Scholar] [CrossRef]
- Yuan, X.; Li, J.; Zhang, X.; Feng, K.; Wei, X.; Zhang, D.; Mi, J. A Low-Cost MEMS Missile-Borne Compound Rotation Modulation Scheme. Sensors 2021, 21, 4910. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Miao, L.J.; Zhou, Z.Q.; Xu, C.S. A High-Accuracy Method for Calibration of Nonorthogonal Angles in Dual-Axis Rotational Inertial Navigation System. IEEE Sens. J. 2021, 21, 16519–16528. [Google Scholar] [CrossRef]
- Zheng, Z.C.; Han, S.L.; Yue, J.; Yuan, L.L. Compensation for Stochastic Error of Gyros in a Dual-axis Rotational Inertial Navigation System. J. Navig. 2016, 69, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Li, X.; Wang, J.; Zhang, J.X. An Adaptive UWB/MEMS-IMU Complementary Kalman Filter for Indoor Location in NLOS Environment. Remote Sens. 2019, 11, 2628. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, J.; Che, X.; Zhang, X.; Hu, C.; Feng, K.; Xu, T. The Optimal Design of Modulation Angular Rate for MEMS-Based Rotary Semi-SINS. Micromachines 2019, 10, 111. [Google Scholar] [CrossRef] [Green Version]
MEMS Sensors | Bias Error | Scale Factor Error | Installation Error | Random Wandering |
---|---|---|---|---|
Gyro | 50 ppm | |||
Accelerometer | 2 mg | 50 ppm |
K | ||
---|---|---|
1/4 | 180 | 45 |
1/3 | 180 | 60 |
1/2 | 120 | 60 |
1 | 120 | 120 |
0 | 120 | 0 |
2 | 60 | 120 |
3 | 60 | 180 |
4 | 45 | 180 |
Serial Number | Movement Status | Duration (s) |
---|---|---|
1 | 10 | |
2 | 45 | |
3 | Uniform | 10 |
4 | 45 | |
5 | Uniform | 45 |
6 | 45 | |
7 | Uniform | 45 |
8 | 45 | |
9 | Uniform | 10 |
10 | 45 | |
11 | Uniform | 10 |
12 | 10 |
Serial Number | Movement Status | |
---|---|---|
1 | 20 | |
2 | 20 | |
3 | 20 | |
4 | 20 | |
5 | 20 | |
6 | 20 |
Scheme | K | ||
---|---|---|---|
1 | 2 | 5 | 10 |
2 | 2 | 10 | 20 |
3 | 2 | 20 | 40 |
4 | 2 | 30 | 60 |
5 | 2 | 40 | 80 |
6 | 2 | 50 | 100 |
7 | 2 | 60 | 120 |
8 | 2 | 100 | 200 |
Indicator Items | Numerical Value |
---|---|
Quality | |
Length | |
Rotational inertia | |
Pneumatic pressure | |
Yaw | |
Pitch | |
Roll | |
Latitude | |
Longitude | |
Altitude | |
Speed | |
Angular velocity |
Errors | Single-Axis Rotation Modulation Scheme | Compound Rotation Modulation Scheme |
---|---|---|
0.007 | −0.003 | |
0.318 | −0.072 | |
−0.220 | 0.114 | |
−0.331 | 0.021 | |
0.829 | −0.013 | |
−0.058 | −0.032 | |
−6.917 | 0.329 | |
18.119 | −0.224 | |
6.049 | −0.581 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, J.; Yuan, X.; Zhang, X.; Wei, X.; Feng, K.; Hu, C.; Zhang, D.; Jiao, Y. Optimal Rotational Angular Velocity Determination Method Based on Compound Rotary Semi-Strapdown Inertial Navigation System. Sensors 2022, 22, 4583. https://doi.org/10.3390/s22124583
Zhang C, Li J, Yuan X, Zhang X, Wei X, Feng K, Hu C, Zhang D, Jiao Y. Optimal Rotational Angular Velocity Determination Method Based on Compound Rotary Semi-Strapdown Inertial Navigation System. Sensors. 2022; 22(12):4583. https://doi.org/10.3390/s22124583
Chicago/Turabian StyleZhang, Chenming, Jie Li, Xiaoqiao Yuan, Xi Zhang, Xiaokai Wei, Kaiqiang Feng, Chenjun Hu, Debiao Zhang, and Yubing Jiao. 2022. "Optimal Rotational Angular Velocity Determination Method Based on Compound Rotary Semi-Strapdown Inertial Navigation System" Sensors 22, no. 12: 4583. https://doi.org/10.3390/s22124583