Mobile Device-Based Struck-By Hazard Recognition in Construction Using a High-Frequency Sound
Abstract
:1. Introduction
2. Research Method
2.1. Research Framework and Data Processing
2.2. Data Collection Environment
3. Preliminary Data Analysis
4. Convolutional Neural Network-Based Struck-by Hazard Classification
4.1. Struck-by Hazard Recognition—Indoor Environment
4.2. Struck-by Hazard Recognition—Outdoor Environment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SafeWork, I.L.O. Global Estimates of Fatal Work Related Diseases and Occupational Accidents; World Bank Regions: Geneva, Switzerland, 2005. [Google Scholar]
- Bureau of Labor Statistics. National census of fatal occupational injuries in 2019. U.S. Department of Labor, Washington, DC. 2020. Available online: https://www.bls.gov/news.release/archives/cfoi_12162020.pdf (accessed on 2 May 2022).
- Chiang, Y.-H.; Wong, F.K.-W.; Liang, S. Fatal Construction Accidents in Hong Kong. J. Constr. Eng. Manag. 2018, 144, 04017121. [Google Scholar] [CrossRef]
- Sakhakarmi, S.; Park, J.; Singh, A. Tactile-Based Wearable System for Improved Hazard Perception of Worker and Equipment Collision. Autom. Constr. 2021, 125, 103613. [Google Scholar] [CrossRef]
- Fang, D.; Zhao, C.; Zhang, M. A Cognitive Model of Construction Workers’ Unsafe Behaviors. J. Constr. Eng. Manag. 2016, 142, 04016039. [Google Scholar] [CrossRef]
- Golovina, O.; Teizer, J.; Pradhananga, N. Heat Map Generation for Predictive Safety Planning: Preventing Struck-by and near Miss Interactions between Workers-on-Foot and Construction Equipment. Autom. Constr. 2016, 71, 99–115. [Google Scholar] [CrossRef]
- Chi, S.; Caldas, C. Image-Based Safety Assessment: Automated Spatial Safety Risk Identification of Earthmoving and Surface Mining Activities. J. Constr. Eng. Manag. 2012, 138, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, K.; Cho, Y.K. Framework of Automated Construction-Safety Monitoring Using Cloud-Enabled BIM and BLE Mobile Tracking Sensors. J. Constr. Eng. Manag. 2017, 143, 05016019. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, H.; Li, H. Computer Vision-based Recognition of 3D Relationship between Construction Entities for Monitoring Struck-by Accidents. Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 1023–1038. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.; Kim, H. Vision-Based Object-Centric Safety Assessment Using Fuzzy Inference: Monitoring Struck-by Accidents with Moving Objects. J. Comput. Civ. Eng. 2016, 30, 04015075. [Google Scholar] [CrossRef]
- Konstantinou, E.; Lasenby, J.; Brilakis, I. Adaptive Computer Vision-Based 2D Tracking of Workers in Complex Environments. Autom. Constr. 2019, 103, 168–184. [Google Scholar] [CrossRef]
- Zhu, Z.; Ren, X.; Chen, Z. Visual Tracking of Construction Jobsite Workforce and Equipment with Particle Filtering. J. Comput. Civ. Eng. 2016, 30, 04016023. [Google Scholar] [CrossRef]
- Teizer, J.; Lao, D.; Sofer, M. Rapid Automated Monitoring of Construction Site Activities Using Ultra-Wideband. In Proceedings of the 24th International Symposium on Automation and Robotics in Construction, Kochi, Kerala, India, 19–21 September 2007; pp. 19–21. [Google Scholar]
- Omar, H.; Mahdjoubi, L.; Kheder, G. Towards an Automated Photogrammetry-Based Approach for Monitoring and Controlling Construction Site Activities. Comput. Ind. 2018, 98, 172–182. [Google Scholar] [CrossRef]
- Jung, M.; Chi, S. Human Activity Classification Based on Sound Recognition and Residual Convolutional Neural Network. Autom. Constr. 2020, 114, 103177. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Cao, R.; Wang, X. Robust Indoor Human Activity Recognition Using Wireless Signals. Sensors 2015, 15, 7195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Marks, E.; Cho, Y.K.; Suryanto, W. Performance Test of Wireless Technologies for Personnel and Equipment Proximity Sensing in Work Zones. J. Constr. Eng. Manag. 2016, 142, 04015049. [Google Scholar] [CrossRef]
- Marks, E.D.; Teizer, J. Method for Testing Proximity Detection and Alert Technology for Safe Construction Equipment Operation. Constr. Manag. Econ. 2013, 31, 636–646. [Google Scholar] [CrossRef]
- Park, J.; Yang, X.; Cho, Y.K.; Seo, J. Improving Dynamic Proximity Sensing and Processing for Smart Work-Zone Safety. Autom. Constr. 2017, 84, 111–120. [Google Scholar] [CrossRef]
- Xie, Y.; Lee, Y.-C.; Shariatfar, M.; Zhang, Z.D.; Rashidi, A.; Lee, H.W. Historical Accident and Injury Database-Driven Audio-Based Autonomous Construction Safety Surveillance. In Computing in Civil Engineering 2019: Data, Sensing and Analytics; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 105–113. [Google Scholar]
- Cho, C.; Lee, Y.-C.; Zhang, T. Sound Recognition Techniques for Multi-Layered Construction Activities and Events. In Computing in Civil Engineering 2017; American Society of Civil Engineers: Reston, VA, USA, 2017; pp. 326–334. [Google Scholar]
- Lee, Y.-C.; Scarpiniti, M.; Uncini, A. Advanced Sound Classifiers and Performance Analyses for Accurate Audio-Based Construction Project Monitoring. J. Comput. Civ. Eng. 2020, 34, 04020030. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Rashidi, A.; Davenport, M.A.; Anderson, D.V. Activity Analysis of Construction Equipment Using Audio Signals and Support Vector Machines. Autom. Constr. 2017, 81, 240–253. [Google Scholar] [CrossRef]
- Sabillon, C.; Rashidi, A.; Samanta, B.; Davenport, M.A.; Anderson, D.V. Audio-Based Bayesian Model for Productivity Estimation of Cyclic Construction Activities. J. Comput. Civ. Eng. 2020, 34, 04019048. [Google Scholar] [CrossRef]
- Scarpiniti, M.; Colasante, F.; Di Tanna, S.; Ciancia, M.; Lee, Y.-C.; Uncini, A. Deep Belief Network Based Audio Classification for Construction Sites Monitoring. Expert Syst. Appl. 2021, 177, 114839. [Google Scholar] [CrossRef]
- Dang, K.; Le, T. A Novel Audio-Based Machine Learning Model for Automated Detection of Collision Hazards at Construction Sites; IAARC Publications: Miami, FL, USA, 2020; Volume 37, pp. 829–835. [Google Scholar]
- Lee, Y.-C.; Shariatfar, M.; Rashidi, A.; Lee, H.W. Evidence-Driven Sound Detection for Prenotification and Identification of Construction Safety Hazards and Accidents. Autom. Constr. 2020, 113, 103127. [Google Scholar] [CrossRef]
- Fukushima, A.; Yagi, R.; Kawai, N.; Honda, M.; Nishina, E.; Oohashi, T. Frequencies of Inaudible High-Frequency Sounds Differentially Affect Brain Activity: Positive and Negative Hypersonic Effects. PLoS ONE 2014, 9, e95464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Diao, W.; Liu, X.; Zhang, K. Acoustic Fingerprinting Revisited: Generate Stable Device ID Stealthily with Inaudible Sound; Association for Computing Machinery: New York, NY, USA, 2014; pp. 429–440. [Google Scholar]
- Nittala, A.S.; Yang, X.-D.; Bateman, S.; Sharlin, E.; Greenberg, S. Phoneear: Interactions for Mobile Devices That Hear High-Frequency Sound-Encoded Data. In Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, Duisburg, Germany, 23–26 June 2015; pp. 174–179. [Google Scholar]
- Hershey, S.; Chaudhuri, S.; Ellis, D.P.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold, B. CNN Architectures for Large-Scale Audio Classification. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 131–135. [Google Scholar]
- ISO 226:2003; Normal Equal-Loudness-Level Contours; ISO: Geneva, Switzerland, 2003.
- Tan, D.; Lu, Y.; Yan, X.; Li, L. BAT: Real-Time Inaudible Sound Capture with Smartphones. Multimed Tools Appl. 2021, 80, 33313–33327. [Google Scholar] [CrossRef]
- Deshotels, L. Inaudible Sound as a Covert Channel in Mobile Devices. In Proceedings of the 8th USENIX Workshop for Offensive Technologies, San Diego, CA, USA, 19 August 2014. [Google Scholar]
- Zhang, T.; Feng, G.; Liang, J.; An, T. Acoustic Scene Classification Based on Mel Spectrogram Decomposition and Model Merging. Appl. Acoust. 2021, 182, 108258. [Google Scholar] [CrossRef]
- Sam, S.M.; Kamardin, K.; Sjarif, N.N.A.; Mohamed, N. Offline Signature Verification Using Deep Learning Convolutional Neural Network (CNN) Architectures GoogLeNet Inception-v1 and Inception-V3. Procedia Comput. Sci. 2019, 161, 475–483. [Google Scholar]
- Zhong, Z.; Jin, L.; Xie, Z. High Performance Offline Handwritten Chinese Character Recognition Using Googlenet and Directional Feature Maps. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 846–850. [Google Scholar]
- Etienne, C.; Fidanza, G.; Petrovskii, A.; Devillers, L.; Schmauch, B. Cnn+ Lstm Architecture for Speech Emotion Recognition with Data Augmentation. arXiv 2018, arXiv:1802.05630. [Google Scholar]
- Budak, Ü.; Cömert, Z.; Rashid, Z.N.; Şengür, A.; Çıbuk, M. Computer-Aided Diagnosis System Combining FCN and Bi-LSTM Model for Efficient Breast Cancer Detection from Histopathological Images. Appl. Soft Comput. 2019, 85, 105765. [Google Scholar] [CrossRef]
- Fang, W.; Ding, L.; Zhong, B.; Love, P.E.; Luo, H. Automated Detection of Workers and Heavy Equipment on Construction Sites: A Convolutional Neural Network Approach. Adv. Eng. Inform. 2018, 37, 139–149. [Google Scholar] [CrossRef]
- Brilakis, I.; Fathi, H.; Rashidi, A. Progressive 3D Reconstruction of Infrastructure with Videogrammetry. Autom. Constr. 2011, 20, 884–895. [Google Scholar] [CrossRef]
- Kolar, Z.; Chen, H.; Luo, X. Transfer Learning and Deep Convolutional Neural Networks for Safety Guardrail Detection in 2D Images. Autom. Constr. 2018, 89, 58–70. [Google Scholar] [CrossRef]
Categories | Peak Frequency (Hz) | Difference of Peak Frequency from 18 kHz |
---|---|---|
ST | 17,999.7 | −0.3 |
MF_S | 18,004.9 | +4.9 |
MF_F | 18,037.9 | +37.9 |
MB_S | 17,983 | −17 |
MB_F | 17,959.2 | −40.8 |
Dataset | Categories | Number of Dataset |
---|---|---|
3 Classes (Indoor) | ST | 180 |
MF | 340 | |
MB | 335 | |
5 Classes (Indoor) | ST | 180 |
MF_S | 182 | |
MF_F | 158 | |
MB_S | 180 | |
MB_F | 155 |
Dataset | Categories | Metrics | |||
---|---|---|---|---|---|
Precision | Recall | F1-Score | Accuracy | ||
3 Classes (Indoor) | ST | 0.973 | 1 | 0.986 | 0.953 |
MF | 0.941 | 0.941 | 0.941 | ||
MB | 0.955 | 0.940 | 0.947 | ||
5 Classes (Indoor) | ST | 0.946 | 0.972 | 0.959 | 0.844 |
MF_S | 0.868 | 0.892 | 0.880 | ||
MF_F | 0.733 | 0.688 | 0.710 | ||
MB_S | 0.886 | 0.861 | 0.873 | ||
MB_F | 0.758 | 0.781 | 0.769 |
Dataset | Categories | Number of Dataset |
---|---|---|
5 Classes (Outdoor) | ST | 198 |
MF_S | 488 | |
MF_F | 434 | |
MB_S | 227 | |
MB_F | 177 | |
7 Classes (Outdoor) | ST | 198 |
MF_S | 244 | |
MF_F | 206 | |
MF_NS_S | 244 | |
MF_NS_F | 228 | |
MB_S | 227 | |
MB_F | 177 |
Dataset | Categories | Metrics | |||
---|---|---|---|---|---|
Precision | Recall | F1-Score | Accuracy | ||
5 Classes (Outdoor) | ST | 0.951 | 0.975 | 0.963 | 0.974 |
MF_S | 0.959 | 0.959 | 0.959 | ||
MF_F | 0.976 | 0.965 | 0.971 | ||
MB_S | 1 | 1 | 1 | ||
MB_F | 1 | 1 | 1 | ||
7 Classes (Outdoor) | ST | 0.951 | 0.975 | 0.963 | 0.789 |
MF_S_S | 0.642 | 0.694 | 0.667 | ||
MF_S_F | 0.698 | 0.732 | 0.714 | ||
MF_NS_S | 0.636 | 0.583 | 0.609 | ||
MF_NS_F | 0.667 | 0.622 | 0.644 | ||
MB_S | 1 | 1 | 1 | ||
MB_F | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Yang, K. Mobile Device-Based Struck-By Hazard Recognition in Construction Using a High-Frequency Sound. Sensors 2022, 22, 3482. https://doi.org/10.3390/s22093482
Lee J, Yang K. Mobile Device-Based Struck-By Hazard Recognition in Construction Using a High-Frequency Sound. Sensors. 2022; 22(9):3482. https://doi.org/10.3390/s22093482
Chicago/Turabian StyleLee, Jaehoon, and Kanghyeok Yang. 2022. "Mobile Device-Based Struck-By Hazard Recognition in Construction Using a High-Frequency Sound" Sensors 22, no. 9: 3482. https://doi.org/10.3390/s22093482
APA StyleLee, J., & Yang, K. (2022). Mobile Device-Based Struck-By Hazard Recognition in Construction Using a High-Frequency Sound. Sensors, 22(9), 3482. https://doi.org/10.3390/s22093482