Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures—A Review
Abstract
:1. Introduction
- ○
- 2.1. Half-Cell Potential (HCP) Sensors.
- ○
- 2.2. Concrete Resistivity (CR) Measurement Sensors.
- ○
- 2.3. Macro- and Microcell Sensors.
- ○
- 2.4. Linear Polarisation Resistance (LPR) Sensors.
- ○
- 2.5. Galvanostatic Pulse Technique (GPT) Sensors.
- ○
- 2.6. Electrochemical Impedance Spectroscopy (EIS) Sensors.
- ○
- 2.7. Chloride Monitoring Sensors.
- ○
- 2.8. pH-Sensors.
- ○
- 3.1. Fibre Optic Sensors (FOS).
- ▪
- 3.1.1. Fibre Bragg Grating (FBG) Strain Sensors.
- ▪
- 3.1.2. Long Period Fibre Grating (LPFG) Refractive Index Sensors.
- ▪
- 3.1.3. Brillouin Optical Time Domain Reflectometry Sensors.
- ○
- 3.2. Elastic Wave Sensors.
- ▪
- Piezoelectric sensors.
- ○
- 3.3. Hall Effect Sensors in an Electromagnetic Field.
2. Electrochemical Methods
2.1. Half-Cell Potential (HCP) Sensors
2.2. Concrete Resistivity (CR) Measurement Sensors
2.3. Macro- and Microcell Sensors
2.4. Linear Polarisation Resistance (LPR) Sensors
2.5. Galvanostatic Pulse Technique (GPT) Sensors
2.6. Electrochemical Impedance Spectroscopy (EIS) Sensors
2.7. Chloride Monitoring Sensors
2.8. pH Sensors
3. Physical Methods
3.1. Fibre Optic Sensors (FOS)
3.1.1. Fibre Bragg Grating (FBG) Strain Sensors
3.1.2. Long Period Fibre Grating (LPFG) Refractive Index Sensors
3.1.3. Brillouin Optical Time Domain Reflectometry Sensors
3.2. Elastic Wave Sensors
Piezoelectric Sensors
3.3. Hall Effect Sensors in an Electromagnetic Field
4. Integrated Sensor Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gulikers, J. Critical review of corrosion deterioration models for reinforced concrete. In Proceedings of the 9th Durability of Building Materials and Components (DBMC’02), Brisban, Australia, 17–21 March 2002; pp. 09401–09410. [Google Scholar]
- Osterminski, K. Zur Voll-Probabilistischen Modellierung der Korrosion von Stahl in Beton: Ein Beitrag zur Dauerhaftigkeitsbemessung von Stahlbetonbauteilen. Genehmigten Dissertation, Universitätsbibliothek der TU München, München, Germany, 2013. [Google Scholar]
- Xian, X.; Zhang, D.; Lin, H.; Shao, Y. Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance. J. CO2 Util. 2022, 56, 101861. [Google Scholar] [CrossRef]
- Tuutti, K. Corrosion of Steel in Concrete; Cementoch Betonginst: Stockholm, Sweden, 1982. [Google Scholar]
- Trejo, D.; Halmen, C.; Reinschmidt, K. Corrosion Performance Tests for Reinforcing Steel in Concrete: Technical Report; No. FHWA/TX-09/0-4825-1; Texas Transportation Institute: Austin, TX, USA, 2009.
- Kennedy, L. Concrete Repair Manual; ACI International: Farmington Hills, MI, USA, 2008; Volume 1. [Google Scholar]
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; Polder, R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair; John Wiley & Sons: Weinheim, Germany, 2013. [Google Scholar]
- Rodrigues, R.; Gaboreau, S.; Gance, J.; Ignatiadis, I.; Betelu, S. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Constr. Build. Mater. 2021, 269, 121240. [Google Scholar] [CrossRef]
- Robles, K.P.V.; Yee, J.J.; Kee, S.H. Electrical Resistivity Measurements for Nondestructive Evaluation of Chloride-Induced Deterioration of Reinforced Concrete—A Review. Materials 2022, 15, 2725. [Google Scholar] [CrossRef]
- Fan, L.; Bao, Y. Review of fiber optic sensors for corrosion monitoring in reinforced concrete. Cem. Concr. Compos. 2021, 120, 104029. [Google Scholar] [CrossRef]
- Thakur, A. Structural Health Monitoring Through the Application of Piezoelectric Sensors–State of the Art Review. Adv. Constr. Mater. Sustain. Environ. 2022, 196, 657–673. [Google Scholar] [CrossRef]
- Hu, J.Y.; Zhang, S.S.; Chen, E.; Li, W.G. A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Constr. Build. Mater. 2022, 325, 126718. [Google Scholar] [CrossRef]
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Stratfull, R.F.; Jurkovich, W.J.; Spellman, D.L. Corrosion Testing of Bridge Decks; Transportation Laboratory: Sacramento, CA, USA, 1975. [Google Scholar]
- Page, C.L.; Havdahl, J. Electrochemical monitoring of corrosion of steel in microsilica cement pastes. Mater. Struct. 1985, 18, 41–47. [Google Scholar] [CrossRef]
- Baweja, D.; Roper, H.; Sirivivatnanon, V. Part 1–Corrosion Rates, Corrosion Activity, and Attack Areas. ACI Mater. J. 1998, 95, 207–217. [Google Scholar]
- Chansuriyasak, K.; Wanichlamlart, C.; Sancharoen, P.; Kongprawechnon, W.; Tangtermsirikul, S. Comparison between half-cell potential of reinforced concrete exposed to carbon dioxide and chloride environment. Songklanakarin J. Sci. Technol. 2010, 32, 461–468. [Google Scholar]
- Frølund, T.; Klinghoffer, O.; Sørensen, H.E.; Denmark, D.D. Pro’s and con’s of half-cell potentials and corrosion rate measurements. In Proceedings of the International Conference on Structural Faults + Repairs, London, UK, 1–3 July 2003. [Google Scholar]
- Elsener, B. Half-cell potential mapping to assess repair work on RC structures. Constr. Build. Mater. 2001, 15, 133–139. [Google Scholar] [CrossRef]
- Guthrie, W.S.; Pinkerton, T.M.; Eggett, D.L. Sensitivity of Half-Cell Potential Measurements to Properties of Concrete Bridge Decks; Report No. UT-08.21; Utah Department of Transportation Research Division: Salt Lake City, UT, USA, 2008.
- ASTM C876-15; Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- DGZfP B3:2014; Merkblatt für Elektrochemische Potentialmessungen zur Detektion von Bewehrungsstahlkorrosion. DGZfP: Berlin, Germany, 2014.
- ODM 218.3.001-2010; Rekomendatsii po Diagnostike Aktivnoy Korrozii Armatury v Zhelezobetonnykh Konstruktsiyakh Mostovykh Sooruzheniy na Avtomobil’nykh Dorogakh Metodom Potentsialov Poluelementa. MIIT: Moskow, Russia, 2010.
- Colozza, N.; Tazzioli, S.; Sassolini, A.; Agosta, L.; di Monte, M.G.; Hermansson, K.; Arduini, F. Multiparametric analysis by paper-assisted potentiometric sensors for diagnostic and monitoring of reinforced concrete structures. Sens. Actuators B Chem. 2021, 345, 130352. [Google Scholar] [CrossRef]
- Muralidharan, S.; Ha, T.H.; Bae, J.H.; Ha, Y.C.; Lee, H.G.; Park, K.W.; Kim, D.K. Electrochemical studies on the solid embeddable reference sensors for corrosion monitoring in concrete structure. Mater. Lett. 2006, 60, 651–655. [Google Scholar] [CrossRef]
- Jin, M.; Gao, S.; Jiang, L.; Jiang, Y.; Wu, D.; Song, R.; Wu, Y.; He, J. Continuous monitoring of steel corrosion condition in concrete under drying/wetting exposure to chloride solution by embedded MnO2 sensor. Int. J. Electrochem. Sci. 2018, 13, 719–738. [Google Scholar] [CrossRef]
- Muralidharan, S.; Saraswathy, V.; Madhavamayandi, A.; Thangavel, K.; Palaniswamy, N. Evaluation of embeddable potential sensor for corrosion monitoring in concrete structures. Electrochim. Acta 2008, 53, 7248–7254. [Google Scholar] [CrossRef]
- Karthick, S.; Muralidharan, S.; Lee, H.S.; Kwon, S.J.; Saraswathy, V. Reliability and long-term evaluation of GO-MnO2 nano material as a newer corrosion monitoring sensor for reinforced concrete structures. Cem. Concr. Compos. 2019, 100, 74–84. [Google Scholar] [CrossRef]
- Chand, A.A.; Prasad, K.A.; Mamun, K.A.; Islam, F.R. Evaluation of concrete corrosion using EMI sensor. In Proceedings of the 2019 IEEE International Conference on Sensors and Nanotechnology, Penang, Malaysia, 24–25 July 2019; pp. 1–4. [Google Scholar]
- Hornbostel, K.; Larsen, C.K.; Geiker, M.R. Relationship between concrete resistivity and corrosion rate—A literature review. Cem. Concr. Compos. 2013, 39, 60–72. [Google Scholar] [CrossRef]
- Broomfield, J.; Millard, S. Measuring concrete resistivity to assess corrosion rates. Concrete 2002, 36, 37–39. [Google Scholar]
- Osterminski, K.; Polder, R.B.; Schießl, P. Long term behaviour of the resistivity of concrete. Heron 2012, 57, 211–230. [Google Scholar]
- Gulikers, J. Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement. Mater. Corros. 2005, 56, 393–403. [Google Scholar] [CrossRef]
- Polder, R.B. Test methods for on site measurement of resistivity of concrete—A RILEM TC-154 technical recommendation. Constr. Build. Mater. 2001, 15, 125–131. [Google Scholar] [CrossRef]
- AASHTO. AASHTO TP 95-11-Standard Test Method for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration; AASHTO: Washington, DC, USA, 2011; pp. 1–6. [Google Scholar]
- Sadowski, L. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements. Sci. World J. 2013, 2013, 714501. [Google Scholar] [CrossRef] [Green Version]
- Michel, A.; Sørensen, H.E.; Geiker, M.R. 5 years of in situ reinforcement corrosion monitoring in the splash and submerged zone of a cracked concrete element. Constr. Build. Mater. 2021, 285, 122923. [Google Scholar] [CrossRef]
- Gowers, K.; Millard, S. Measurement of concrete resistivity for assessment of corrosion. ACI Mater. J. 1999, 96, 536–541. [Google Scholar]
- Priou, J.; Lecieux, Y.; Chevreuil, M.; Gaillard, V.; Lupi, C.; Leduc, D.; Rozièrec, E.; Guyard, R.; Schoefs, F. In situ DC electrical resistivity mapping performed in a reinforced concrete wharf using embedded sensors. Constr. Build. Mater. 2019, 211, 244–260. [Google Scholar] [CrossRef]
- Du Plooy, R.; Lopes, S.P.; Villain, G.; Derobert, X. Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT E Int. 2013, 54, 27–36. [Google Scholar] [CrossRef]
- Corva, D.M.; Hosseini, S.S.; Collins, F.; Adams, S.D.; Gates, W.P.; Kouzani, A.Z. Miniature resistance measurement device for structural health monitoring of reinforced concrete infrastructure. Sensors 2020, 20, 4313. [Google Scholar] [CrossRef]
- Halabe, U.B.; Kavi, J.; GangaRao, H.V. Sensors for Monitoring Corrosion of Steel Embedded in Concrete. In Proceedings of the Department of Defense-Allied Nations Technical Corrosion Conference, Pittsburgh, PA, USA, 15–19 November 2015. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, X.; Sun, G. Embedded resistivity sensor for compressive strength prediction of cement paste by electrochemical impedance spectroscopy. IEEE Sens. Lett. 2021, 5, 6002204. [Google Scholar] [CrossRef]
- Kamat, A.; Abbas, Y.; Blagojević, A.; van Casteren, T.; Walraven, J. Real-time chloride diffusion coefficient in concrete using embedded resistivity sensors. In Proceedings of the 4th International Rilem Conference on Microstructure Related Durability of Cementitious Composites, Online, 29 April–25 May 2021; Delft University of Technology: Delft, The Netherlands, 2021; pp. 493–500. [Google Scholar]
- Biondi, E.; Frunzio, G. Degradation of Concrete Resistance: Analysis of a Homogeneous Area. The City of Caserta. In Proceedings of the 1st International Conference on Structural Damage Modelling and Assessment, Ghent, Belgium, 4–5 August 2020; Springer: Singapore, 2021; pp. 31–48. [Google Scholar] [CrossRef]
- Yoo, J.H.; Park, Z.T.; Kim, J.G.; Chung, L. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: Part 1. Laboratory tests to correlate galvanic current with actual damage. Cem. Concr. Res. 2003, 33, 2057–2062. [Google Scholar] [CrossRef]
- McDonald, D.B.; Sherman, M.R.; Pfeifer, D.W.; Virmani, Y.P. Stainless steel reinforcing as corrosion protection. Concr. Int. 1995, 17, 65–70. [Google Scholar]
- Park, J.H.; Choi, Z.T.; Kim, J.G.; Chung, L. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete Structure: Part 2. Laboratory tests to correlate galvanic current with actual damage. Cem. Concr. Res. 2005, 35, 1814–1819. [Google Scholar] [CrossRef]
- Raupach, M.; Schießl, P. Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures. NDT E Int. 2001, 34, 435–442. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.; In, W. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete. Sensors 2013, 13, 13258–13275. [Google Scholar] [CrossRef] [Green Version]
- Harnisch, J.; Dauberschmidt, C.; Ebell, G.; Mayer, T. The new DGZfP Specification B12 “Corrosion Monitoring of Reinforced Concrete Structures”. In Proceedings of the International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, SMAR 2019, Potsdam, Germany, 27–29 August 2019; p. We-4. [Google Scholar]
- He, M.; Li, X. Quantitative determination of corrosion status of rebar by electrochemical parameters. Acad. J. Archit. Geotech. Eng. 2021, 3, 32–40. [Google Scholar] [CrossRef]
- Raupach, M. Smart Structures: Development of sensors to monitor the corrosion risk for the reinforcement of concrete bridges. In Proceedings of the International Conference on Bridge Maintenance, Safety and Management (IABMAS‘02), CIMNE, Barcelona, Spain, 14–17 July 2002. [Google Scholar]
- Valdés, A.C.; Medeiros, M.H.F.; Macioski, G. Corrosion sensor for monitoring reinforced concrete structures: Tests on reinforced concrete specimens. Rev. Asoc. Latinoam. Control. Calid. Patol. Recuper. Constr. 2021, 11, 64–87. [Google Scholar] [CrossRef]
- Pereira, E.V.; Figueira, R.B.; Salta, M.M.; Fonseca, I.T.E. Embedded Sensors for Corrosion Monitoring of Existing Reinforced Concrete Structures. Mater. Sci. Forum. 2008, 587–588, 677–681. [Google Scholar] [CrossRef]
- Shevtsov, D.S.; Zarcyn, I.D. Evaluation of the effectiveness of migrating corrosion inhibitors and hydrophobizers for protection against corrosion of steel reinforcement in concrete using bimetallic batch sensor. Int. J. Corros. Scale Inhib. 2018, 7, 427–442. [Google Scholar] [CrossRef]
- Qiao, G.; Hong, Y.; Sun, G.; Yang, O. Corrosion energy: A novel source to power the wireless sensor. IEEE Sens. J. 2012, 13, 1141–1142. [Google Scholar] [CrossRef]
- Song, H.W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures—A review. Int. J. Electrochem. Sci. 2007, 2, 1–28. [Google Scholar]
- Nagayama, M.; Tamura, H.; Shimozawa, K. Corrosion Monitoring Using Embedded Minisensors on Rebars in Concrete Rehabilitated with a VCI; General Building Research Corporation of Japan: Osaka, Japan, 1997. [Google Scholar]
- Shevtsov, D.S.; Zartsyn, I.D.; Komarova, E.S. System for Continuous Monitoring of the Corrosion Rate in Concrete Reinforcement based on Bimetallic Batch Sensors. Prot. Met. Phys. Chem. Surf. 2021, 57, 1388–1394. [Google Scholar] [CrossRef]
- Stern, M. A method for determining corrosion rates from linear polarization data. Corrosion 1958, 14, 60–64. [Google Scholar] [CrossRef]
- Andrade, C.; González, J.A. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Mater. Corros. 1978, 29, 515–519. [Google Scholar] [CrossRef]
- Feliu, S.; Gonzalez, J.A.; Andrade, C.; Feliu, V. On-site determination of the polarization resistance in a reinforced concrete beam. Corrosion 1988, 44, 761–765. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Molina, A.; Escudero, M.L.; Andrade, C. Errors in the electrochemical evaluation of very small corrosion rates—I. polarization resistance method applied to corrosion of steel in concrete. Corros. Sci. 1985, 25, 917–930. [Google Scholar] [CrossRef]
- Poursaee, A. Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete. Electrochim. Acta 2010, 55, 1200–1206. [Google Scholar] [CrossRef]
- Brown, D.W.; Connolly, R.J.; Darr, D.R.; Agarwala, V.S. Linear Polarization Resistance Flex Sensors and Methods That Involve Structure as Working Electrode (s). U.S. Patent No. 10,031,066, 24 July 2018. Available online: https://patentimages.storage.googleapis.com/c5/7d/eb/4964a9e4773e44/US10031066.pdf (accessed on 12 January 2022).
- Andrade, C.; Alonso, C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 2004, 37, 623–643. [Google Scholar] [CrossRef]
- Elsener, B. Corrosion rate of steel in concrete—Measurements beyond the Tafel law. Corros. Sci. 2005, 47, 3019–3033. [Google Scholar] [CrossRef]
- Elsener, B.; Klinghoffer, O.; Frolund, T.; Rislund, E.; Schiegg, Y.; Böhni, H. Assessment of reinforcement corrosion by means of galvanostatic pulse technique. In Proceedings of the International Conference on Repair of Concrete Structures—From Theory to Practice in a Marine Environment, Svolvaer, Norway, 28–30 May 1997; pp. 391–400. [Google Scholar]
- Sathiyanarayanan, S.; Natarajan, P.; Saravanan, K.; Srinivasan, S.; Venkatachari, G. Corrosion monitoring of steel in concrete by galvanostatic pulse technique. Cem. Concr. Compos. 2006, 28, 630–637. [Google Scholar] [CrossRef]
- Glass, G.K.; Page, C.L.; Short, N.R.; Zhang, J.Z. The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corros. Sci. 1997, 39, 1657–1663. [Google Scholar] [CrossRef]
- Newton, C.J.; Sykes, J.M. A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corros. Sci. 1988, 28, 1051–1074. [Google Scholar] [CrossRef]
- Glass, G.K.; Page, C.L.; Short, N.R.; Yu, S.W. An investigation of galvanostatic transient methods used to monitor the corrosion rate of steel in concrete. Corros. Sci. 1993, 35, 1585–1592. [Google Scholar] [CrossRef]
- Poursaee, A.; Hansson, C.M. Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis. Corros. Sci. 2008, 50, 2739–2746. [Google Scholar] [CrossRef]
- Gecor 8TM|Corrosion Analysis of Concrete and Steel Reinforcement Bars. Available online: https://www.ndtjames.com//ProductDetails.asp?ProductCode=C%2DCS%2D8 (accessed on 10 February 2022).
- Abbas, Y.; Nutma, J.S.; Olthuis, W. Corrosion Monitoring of Reinforcement Steel Using Galvanostatically Induced Potential Transients. IEEE Sens. 2016, 16, 693–698. [Google Scholar] [CrossRef]
- Figueira, R.B. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Appl. Sci. 2017, 7, 1157. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, Y.; Koike, T.; Tokieda, H.; Shitanda, I.; Itagaki, M.; Kato, Y. Non-contact measurement to detect steel rebar corrosion in reinforced concrete by electrochemical impedance spectroscopy. J. Electrochem. Soc. 2019, 166, C3316–C3319. [Google Scholar] [CrossRef]
- Jaśniok, M. Studies on the Effect of a Limited Polarization Range of Reinforcement on Impedance Spectra Shapes of Steel in Concrete. Procedia Eng. 2015, 108, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, J.; Feirahi, M.H.; Farahmand-Tabar, S.; Fard, A.H.K. A novel approach for non-destructive EMI-based corrosion monitoring of concrete-embedded reinforcements using multi-orientation piezoelectric sensors. Constr. Build. Mater. 2021, 273, 121689. [Google Scholar] [CrossRef]
- Shi, X. Monitoring of reinforced concrete corrosion. Eco-Effic. Repair Rehabil. Concr. Infrastruct. 2018, 69–95. [Google Scholar] [CrossRef]
- Izquierdo, D.; Alonso, C.; Andrade, C.; Castellote, M. Potentiostatic determination of chloride threshold values for rebar depassivation: Experimental and statistical study. Electrochim. Acta 2004, 49, 2731–2739. [Google Scholar] [CrossRef]
- Nygaard, P.V.; Geiker, M.R. A method for measuring the chloride threshold level required to initiate reinforcement corrosion in concrete. Mater. Struct. 2005, 38, 489–494. [Google Scholar] [CrossRef]
- Montemor, M.F.; Simoes, A.M.P.; Ferreira, M.G.S. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques. Cem. Concr. Compos. 2003, 25, 491–502. [Google Scholar] [CrossRef] [Green Version]
- ASTM C1202-2019; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2019.
- AASHTO-T 2778; Standard Method of Test for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. AASHTO: Washington, DC, USA, 2021.
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Potentiometric determination of the chloride ion activity in cement based materials. J. Appl. Electrochem. 2010, 40, 561–573. [Google Scholar] [CrossRef]
- Atkins, C.P.; Scantlebury, J.D.; Nedwell, P.J.; Blatch, S.P. Monitoring chloride concentrations in hardened cement pastes using ion selective electrodes. Cem. Concr. Res. 1996, 26, 319–324. [Google Scholar] [CrossRef]
- Colozza, N.; Tazzioli, S.; Sassolini, A.; Agosta, L.; di Monte, M.G.; Hermansson, K.; Arduini, F. Vertical-Flow Paper Sensor for On-Site and Prompt Evaluation of Chloride Contamination in Concrete Structures. Anal. Chem. 2021, 93, 14369–14374. [Google Scholar] [CrossRef] [PubMed]
- Elsener, B.; Zimmermann, L.; Böhni, H. Non destructive determination of the free chloride content in cement based materials. Mater. Corros. 2003, 54, 440–446. [Google Scholar] [CrossRef]
- Im, H.; Lee, Y.; Inturu, O.; Liu, N.; Lee, S.; Kwon, S.J.; Lee, H.S.; Kim, S. A highly sensitive ultrathin-film iron corrosion sensor encapsulated by an anion exchange membrane embedded in mortar. Constr. Build. Mater. 2017, 156, 506–514. [Google Scholar] [CrossRef]
- Leung, C.; Wan, K.; Chen, L. A novel optical fiber sensor for steel corrosion in concrete structures. Sensors 2008, 8, 1960–1976. [Google Scholar] [CrossRef] [Green Version]
- Laferrière, F.; Inaudi, D.; Kronenberg, P.; Smith, I.F. A new system for early chloride detection in concrete. Smart Mater. Struct. 2008, 17, 045017. [Google Scholar] [CrossRef]
- Tariq, A.; Baydoun, J.; Remy, C.; Ghasemi, R.; Lefevre, J.P.; Mongin, C.; Dauzères, A.; Leray, I. Fluorescent molecular probe based optical fiber sensor dedicated to pH measurement of concrete. Sens. Actuators B Chem. 2021, 327, 128906. [Google Scholar] [CrossRef]
- Lambert, P.; Page, C.L.; Vassie, P.R.W. Investigations of reinforcement corrosion. 2. Electrochemical monitoring of steel in chloride-contaminated concrete. Mater. Struct. 1991, 24, 351–358. [Google Scholar] [CrossRef]
- Mancio, M.; Kusinski, G.; Monteiro, P.J.M.; Devine, T.M. Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of 9% Cr microcomposite steel in highly alkaline environments. J. ASTM Int. 2009, 6, 1–10. [Google Scholar] [CrossRef]
- Behnood, A.; Van Tittelboom, K.; De Belie, N. Methods for measuring pH in concrete: A review. Constr. Build. Mater. 2016, 105, 176–188. [Google Scholar] [CrossRef]
- Huang, W.D.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J.C. A flexible pH sensor based on the iridium oxide sensing film. Sens. Actuators A. 2011, 169, 1–11. [Google Scholar] [CrossRef]
- Kinoshita, K.; Madou, M.J. Electrochemical measurements on Pt, Ir, and Ti oxides as pH probes. J. Electrochem. Soc. 1984, 131, 1089–1094. [Google Scholar] [CrossRef]
- Baur, J.E.; Spaine, T.W. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium (III) oxide. J. Electroanal. Chem. 1998, 443, 208–216. [Google Scholar] [CrossRef]
- Du, R.G.; Hu, R.G.; Huang, R.S.; Lin, C.J. In situ measurement of Cl-concentrations and pH at the reinforcing steel/concrete interface by combination sensors. Anal. Chem. 2006, 78, 3179–3185. [Google Scholar] [CrossRef]
- Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. Review on state-of-the-art in polymer based pH sensors. Sensors 2007, 7, 3027. [Google Scholar] [CrossRef]
- Khalil, G.E.; Daddario, P.; Lau, K.S.F.; Imtiaz, S.; King, M.; Gouterman, M.; Sidelev, A.; Puran, N.; Ghandehari, M.; Bruckner, C. Meso-Tetraarylporpholactones as high pH sensors. Analyst 2010, 135, 2125–2131. [Google Scholar] [CrossRef]
- McPolin, D.O.; Basheer, P.A.M.; Grattan, K.T.V.; Long, A.E.; Sun, T.; Xie, W. Preliminary development and evaluation of fiber-optic chemical sensors. J. Mater. Civ. Eng. 2011, 23, 1200–1210. [Google Scholar] [CrossRef]
- Alwis, L.S.; Bremer, K.; Roth, B. Fiber optic sensors embedded in textile-reinforced concrete for smart structural health monitoring: A review. Sensors 2021, 21, 4948. [Google Scholar] [CrossRef]
- Luo, D.; Li, Y.; Li, J.; Lim, K.S.; Nazal, N.A.M.; Ahmad, H. A recent progress of steel bar corrosion diagnostic techniques in RC structures. Sensors 2019, 19, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastore, R.; Micheli, D.; Vricella, A.; Morles, R.B.; Marchetti, M.; Moglie, F.; Primiani, V.M. Advanced concrete materials for EMI reduction in protected environment and IEMI threats suppression. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015. [Google Scholar] [CrossRef]
- Micheli, D.; Pastore, R.; Vricella, A.; Morles, R.B.; Marchetti, M.; Delfini, A.; Moglie, F.; Primiani, V.M. Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band. Mater. Sci. Eng. B 2014, 188, 119–129. [Google Scholar] [CrossRef]
- Mao, J.; Chen, J.; Cui, L.; Jin, W.; Xu, C.; He, Y. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors. Sensors 2015, 15, 8866–8883. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Cai, H.; Yang, M.; Tong, X.; Zhou, C.; Chen, W. Fe-C-coated fibre Bragg grating sensor for steel corrosion monitoring. Corros. Sci. 2011, 53, 1933–1938. [Google Scholar] [CrossRef]
- Chen, W.; Dong, X. Modification of the wavelength-strain coefficient of FBG for the prediction of steel bar corrosion embedded in concrete. Opt. Fiber Technol. 2012, 18, 47–50. [Google Scholar] [CrossRef]
- Gao, J.; Wu, J.; Li, J.; Zhao, X. Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. NDT E Int. 2011, 44, 202–205. [Google Scholar] [CrossRef]
- Zhou, Z.; Graver, T.W.; Hsu, L.; Ou, J.P. Techniques of Advanced FBG sensors: Fabrication, demodulation, encapsulation and their application in the structural health monitoring of bridges. Pac. Sci. Rev. 2003, 5, 116–121. [Google Scholar]
- Almubaied, O.; Chai, H.K.; Islam, M.R.; Lim, K.S.; Tan, C.G. Monitoring corrosion process of reinforced concrete structure using FBG strain sensor. IEEE Trans. Instrum. Meas. 2017, 66, 2148–2155. [Google Scholar] [CrossRef]
- Jaafar, M.M.; Saman, H.M.; Ariffin, N.F.; Muthusamy, K.; Ahmad, S.W.; Ismail, N. Corrosion monitoring on steel reinforced nano metaclayed-UHPC towards strain modulation using fiber Bragg grating sensor. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 122006. [Google Scholar] [CrossRef]
- Li, W.; Xu, C.; Ho, S.C.M.; Wang, B.; Song, G. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [Google Scholar] [CrossRef] [Green Version]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tang, F.; Liang, X. Steel bar corrosion monitoring with long-period fiber grating sensors coated with nano iron/silica particles and polyurethane. Struct. Health Monit. 2015, 14, 178–189. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, F.; Tang, Y.; O’Keefe, M.J.; Chen, G. Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures. Corros. Sci. 2017, 127, 70–81. [Google Scholar] [CrossRef]
- Tang, F.; Chen, Y.; Li, Z.; Tang, Y.; Chen, G. Application of Fe-C coated LPFG sensor for early stage corrosion monitoring of steel bar in RC structures. Constr. Build. Mater. 2018, 175, 14–25. [Google Scholar] [CrossRef]
- Tang, F.; Zhou, G.; Li, H.N.; Verstrynge, E. A review on fiber optic sensors for rebar corrosion monitoring in RC structures. Constr. Build. Mater. 2021, 313, 125578. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, X.; Zhan, Y.; Gong, P. Damage evaluation of concrete based on Brillouin corrosion expansion sensor. Constr. Build. Mater. 2017, 143, 387–394. [Google Scholar] [CrossRef]
- Jagtap, A.; Nayak, C. Corrosion monitoring of RCC structure by using corrosion expansion sensor. Int. J. Res. Anal. Rev. 2019, 6, 187–191. [Google Scholar]
- Fan, L.; Tan, X.; Zhang, Q.; Meng, W.; Chen, G.; Bao, Y. Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor. Eng. Struct. 2020, 204, 110039. [Google Scholar] [CrossRef]
- Fan, L.; Bao, Y.; Meng, W.; Chen, G. In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor. Compos. Part B 2019, 165, 679–689. [Google Scholar] [CrossRef]
- Scott, R.H.; Chikermane, S.; Vidakovic, M.; McKinley, B.; Sun, T.; Banerji, P.; Grattan, K.T. Development of low cost packaged fibre optic sensors for use in reinforced concrete structures. Measurement 2019, 135, 617–624. [Google Scholar] [CrossRef]
- Seo, H. Monitoring of CFA pile test using three dimensional laser scanning and distributed fiber optic sensors. Opt. Lasers Eng. 2020, 130, 106089. [Google Scholar] [CrossRef]
- Monsberger, C.; Lienhart, W.; Kluckner, A.; Wagner, L.; Schubert, W. Continuous strain measurements in a shotcrete tunnel lining using distributed fibre optic sensing. In Proceedings of the 9th European Workshop on Structural Health Monitoring, Manchester, UK, 10–13 July 2018. [Google Scholar]
- Bado, M.F. Performance of Distributed Optical Fiber Sensors Embedded inside Reinforced Concrete Structural Elements. Ph.D. Thesis, Universitat Politècnica de Catalunya, Catalonia, Spain, 2021. [Google Scholar]
- Abavisani, I.; Rezaifar, O.; Kheyroddin, A. Multifunctional properties of shape memory materials in civil engineering applications: A state-of-the-art review. J. Build. Eng. 2021, 44, 102657. [Google Scholar] [CrossRef]
- Nagai, H.; Oishi, R. Shape memory alloys as strain sensors in composites. Smart Mater. Struct. 2006, 15, 493. [Google Scholar] [CrossRef]
- Song, G.; Mo, Y.L.; Otero, K.; Gu, H. Health monitoring and rehabilitation of a concrete structure using intelligent materials. Smart Mater. Struct. 2006, 15, 309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, C.; Sun, M.; Li, Z. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors. Constr. Build. Mater. 2017, 135, 68–75. [Google Scholar] [CrossRef]
- Xie, L.; Zhu, X.; Liu, Z.; Liu, X.; Wang, T.; Xing, J. A rebar corrosion sensor embedded in concrete based on surface acoustic wave. Measurement 2020, 165, 108118. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Sharma, S.; Mukherjee, A. Monitoring invisible corrosion in concrete using a combination of wave propagation techniques. Cem. Concr. Compos. 2018, 90, 89–99. [Google Scholar] [CrossRef]
- Amiri, A.S.; Erdogmus, E.; Richter-Egger, D. A Comparison between Ultrasonic Guided Wave Leakage and Half-Cell Potential Methods in Detection of Corrosion in Reinforced Concrete Decks. Signals 2021, 2, 413–433. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, W.; Zhao, P.; Qin, L.; Shiotani, T. Research on in-situ corrosion process monitoring and evaluation of reinforced concrete via ultrasonic guided waves. Constr. Build. Mater. 2022, 321, 126317. [Google Scholar] [CrossRef]
- Mangual, J.; Elbatanouny, M.K.; Ziehl, P. Corrosion Damage Quantification of Prestressing Strands Using Acoustic Emission. J. Mater. Civ. Eng. 2013, 25, 1326–1334. [Google Scholar] [CrossRef]
- Elbatanouny, M.K.; Mangual, J.; Ziehl, P. Early Corrosion Detection in Prestressed Concrete Girders Using Acoustic Emission. J. Mater. Civ. Eng. 2014, 26, 504–511. [Google Scholar] [CrossRef]
- Calabrese, L.; Campanella, G.; Proverbio, E. Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete. Constr. Build. Mater. 2012, 34, 362–371. [Google Scholar] [CrossRef]
- Du, C.; Owusu Twumasi, J.; Tang, Q.; Guo, X.; Zhou, J.; Yu, T.; Wang, X. All-optical photoacoustic sensors for steel rebar corrosion monitoring. Sensors 2018, 18, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J. Corrosion detection of reinforcement of building materials with piezoelectric sensors. Kem. Ind. Časopis Kemičara Kem. Inženjera Hrvat. 2017, 66, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Xu, D.; Huang, S.; Cheng, X. Assessment of corrosion of reinforcing steel bars in concrete using embedded piezoelectric transducers based on ultrasonic wave. Constr. Build. Mater. 2017, 151, 925–930. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.; Geng, B.; Xu, D. Corrosion monitoring of the reinforced concrete by using the embedded annular piezoelectric transducer. J. Mater. Res. Technol. 2020, 9, 3511–3519. [Google Scholar] [CrossRef]
- Su, D.; Xia, Y.; Yuan, R. Self-powered wireless sensor network for automated corrosion prediction of steel reinforcement. J. Sens. 2018, 2018, 4125752. [Google Scholar] [CrossRef] [Green Version]
- Sriramadasu, R.C.; Lu, Y.; Banerjee, S. Identification of incipient pitting corrosion in reinforced concrete structures using guided waves and piezoelectric wafer transducers. Struct. Health Monit. 2019, 18, 164–171. [Google Scholar] [CrossRef]
- Kaur, N.; Bhalla, S. Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors. J. Energy Eng. 2015, 141, D4014001. [Google Scholar] [CrossRef]
- Kocherla, A.; Duddi, M.; Subramaniam, K.V. Embedded PZT sensors for monitoring formation and crack opening in concrete structures. Measurement 2021, 182, 109698. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Wang, Q.; Xu, N.; Zhang, T. Nonlinear Ultrasonic Second Harmonic Assessment of Concrete Defects Based on Embedded Piezoelectric Sensors. Res. Nondestruct. Eval. 2020, 31, 254–270. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, T. Steel Bar corrosion monitoring based on encapsulated piezoelectric sensors. IOP Conf. Ser. Mater. Sci. Eng. 2018, 351, 012002. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jin, Z.; Zhao, T.; Wang, P.; Li, Z.; Xiong, C.; Zhang, K. Use of a novel electro-magnetic apparatus to monitor corrosion of reinforced bar in concrete. Sens. Actuators A Phys. 2019, 286, 14–27. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Xu, X.; Zhao, T.; Wang, P.; Li, Z. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete. Constr. Build. Mater. 2020, 245, 118472. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Gao, Y.; Zhao, T.; Wang, P.; Li, Z. Coupled application of innovative electromagnetic sensors and digital image correlation technique to monitor corrosion process of reinforced bars in concrete. Cem. Concr. Compos. 2020, 113, 103730. [Google Scholar] [CrossRef]
- Na, S.; Paik, I. Application of thermal image data to detect rebar corrosion in concrete structures. App. Sci. 2019, 9, 4700. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Banthia, N. Corrosion detection in reinforced concrete using induction heating and infrared thermography. J. Civ. Struct. Health Monit. 2011, 1, 25–35. [Google Scholar] [CrossRef]
- Kato, Y. Prediction of the resistance performance of the substance movement by using thermograph. Proc. JSCE Annu. Conf. 2003, 58, 825–826. [Google Scholar]
- Omar, T.; Nehdi, M.L. Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography. Autom. Constr. 2017, 83, 360–371. [Google Scholar] [CrossRef]
- Escalante, E.; Ito, S. Measuring the Rate of Corrosion of Steel in Concrete. Corrosion Rates of Steel in Concrete; ASTM International: West Conshohocken, PA, USA, 1990. [Google Scholar] [CrossRef]
- Basheer, P.A.M.; Srinivasan, S. Novel Sensors for Monitoring the Durability of Concrete Structures. In Proceedings of the ACI/VCA International Symposium on Recent Advances in Concrete Technology and Sustainability Issues, Hanoi, Vietnam, 1 December 2009. [Google Scholar]
- Duffó, G.S.; Farina, S.B. Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures. Constr. Build. Mater. 2009, 23, 2746–2751. [Google Scholar] [CrossRef]
- Martínez, I.; Andrade, C. Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 2009, 31, 545–554. [Google Scholar] [CrossRef]
- Lu, S.; Ba, H.J. Corrosion risk assessment of chloride-contaminated concrete structures using embeddable multi-cell sensor system. J. Cent. South Univ. Technol. 2011, 18, 230–237. [Google Scholar] [CrossRef]
- Yu, H.; Caseres, L. An embedded multi-parameter corrosion sensor for reinforced concrete structures. Mater. Corros. 2012, 63, 1011–1016. [Google Scholar] [CrossRef]
- Qiao, G.; Xiao, H.; Sun, G. Identification of the reinforcing steel’s corrosion state in RC beams based on electrochemical sensor. Sens. Rev. 2011, 31, 218–227. [Google Scholar] [CrossRef]
- Arndt, R.W.; Cui, J.; Huston, D.R. Monitoring of reinforced concrete corrosion and deterioration by periodic multi-sensor non-destructive evalution. AIP Conf. Proc. 2011, 1335, 1371–1378. [Google Scholar] [CrossRef]
- Jeong, J.A.; Kim, M. The corrosion measurement of reinforced concrete specimens using Pt/Ti electrode. J. Korean Soc. Mar. Eng. (JKOSME) 2019, 43, 375–379. [Google Scholar] [CrossRef]
- Ramón, J.E.; Martínez, I.; Gandía-Romero, J.M.; Soto, J. An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: Cell constants determination. Sensors 2021, 21, 2481. [Google Scholar] [CrossRef]
Range of Values Ecor, mV | Corrosion Condition of the Reinforcement |
---|---|
>−200 | Passivity with a probability of 90% |
−200…−350 | Undefined state |
<−350 | Corrosion with a probability of 90% |
Range of Values CR, Ωm | Risk of Corrosion of Reinforcement (for 20 °C) |
---|---|
<100 | high |
100…500 | moderate |
500…1000 | low |
>1000 | negligible |
Range of Values | Corrosion Rate | |
---|---|---|
icor, μA·cm−2 | Δl, μm·y−1 | |
≤0.1 | ≤1.16 | passive state |
0.1…0.5 | 1.16…5.80 | low |
0.5…1.0 | 5.8…11.6 | moderate |
>1.0 | >11.6 | high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shevtsov, D.; Cao, N.L.; Nguyen, V.C.; Nong, Q.Q.; Le, H.Q.; Nguyen, D.A.; Zartsyn, I.; Kozaderov, O. Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures—A Review. Sensors 2022, 22, 3421. https://doi.org/10.3390/s22093421
Shevtsov D, Cao NL, Nguyen VC, Nong QQ, Le HQ, Nguyen DA, Zartsyn I, Kozaderov O. Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures—A Review. Sensors. 2022; 22(9):3421. https://doi.org/10.3390/s22093421
Chicago/Turabian StyleShevtsov, Dmitry, Nhat Linh Cao, Van Chi Nguyen, Quoc Quang Nong, Hong Quan Le, Duc Anh Nguyen, Ilya Zartsyn, and Oleg Kozaderov. 2022. "Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures—A Review" Sensors 22, no. 9: 3421. https://doi.org/10.3390/s22093421