Identifying Individuals Who Currently Report Feelings of Anxiety Using Walking Gait and Quiet Balance: An Exploratory Study Using Machine Learning
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Instruments
2.3.1. Self-Reported Feelings of Anxiety
2.3.2. Gait
2.3.3. Balance
2.3.4. Procedure
2.4. Statistical Analysis
Pre-Processing of Data
2.5. Main Analysis
2.5.1. Objective 1: Feature Importance
2.5.2. Objective 2: Model Training
2.5.3. Objective 3: Mean Differences
3. Results
3.1. Objective 1: Feature Importance
3.2. Objective 2: Model Training
3.3. Objective 3: Mean Differences
3.3.1. Gait
3.3.2. Neck Features
3.3.3. Trunk Features
3.3.4. Lower Extremity Characteristics
3.3.5. Turning Features
3.3.6. Anticipatory Postural Adjustment during Initiation of Gait
3.3.7. Balance
3.3.8. Condition: Eyes Open, Feet on Ground
3.3.9. Condition: Eyes Closed, Feet on Ground
3.3.10. Condition: Eyes Open, Feet on Foam Surface
3.3.11. Condition: Eyes Closed, Feet on Foam Surface
4. Discussion
4.1. Objective 1
4.2. Objective 2
4.3. Objective 3
4.3.1. Gait
4.3.2. Balance
4.3.3. Implications
4.3.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baxter, A.J.; Scott, K.M.; Vos, T.; Whiteford, H.A. Global prevalence of anxiety disorders: A systematic review and meta-regression. Psychol. Med. 2013, 43, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; O’Amlag, C.P.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Twenge, J.M.; Joiner, T.E. U.S. Census Bureau-assessed prevalence of anxiety and depressive symptoms in 2019 and during the 2020 COVID-19 pandemic. Depress. Anxiety 2020, 37, 954–956. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.J.; Vos, T.; Scott, K.M.; Ferrari, A.J.; Whiteford, H.A. The global burden of anxiety disorders in 2010. Psychol. Med. 2014, 44, 2363–2374. [Google Scholar] [CrossRef]
- Stein, D.J.; Craske, M.A.; Friedman, M.J.; Phillips, K.A. Anxiety disorders, obsessive-compulsive and related disorders, trauma-and stressor-related disorders, and dissociative disorders in DSM-5. Am. J. Psychiatry 2014, 171, 611–613. [Google Scholar] [CrossRef]
- Bird, C.; Rieker, P. Gender and Health: The Effects of Constrained Choices and Social Policies; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Jahedi, S.; Méndez, F. On the advantages and disadvantages of subjective measures. J. Econ. Behav. Organ. 2014, 98, 97–114. [Google Scholar] [CrossRef]
- Beiter, R.; Nash, R.; McCrady, M.; Rhoades, D.; Linscomb, M.; Clarahan, M.; Sammut, S. The prevalence and correlates of depression, anxiety, and stress in a sample of college students. J. Affect. Disord. 2015, 173, 90–96. [Google Scholar] [CrossRef]
- Humer, E.; Pieh, C.; Probst, T. Metabolomic Biomarkers in Anxiety Disorders. Int. J. Mol. Sci. 2020, 21, 4784. [Google Scholar] [CrossRef]
- Boeke, E.A.; Holmes, A.J.; Phelps, E.A. Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 799–807. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, Z.; Wang, Y.; Wang, J.; Li, B.; Zhu, T.; Xiang, Y. See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data. PLoS ONE 2019, 14, e0216591. [Google Scholar] [CrossRef] [Green Version]
- Miao, B.; Liu, X.; Zhu, T. Automatic mental health identification method based on natural gait pattern. PsyCh J. 2021, 10, 453–464. [Google Scholar] [CrossRef]
- Feldman, R.; Schreiber, S.; Pick, C.G.; Been, E. Gait, balance, mobility and muscle strength in people with anxiety compared to healthy individuals. Hum. Mov. Sci. 2019, 67, 102513. [Google Scholar] [CrossRef]
- Reelick, M.F.; van Iersel, M.B.; Kessels, R.P.C.; Rikkert, M.G.M.O. The influence of fear of falling on gait and balance in older people. Age Ageing 2009, 38, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Richardson, L. Fear of falling. Qual. Inquiry 2014, 20, 1133–1140. [Google Scholar] [CrossRef]
- Balaban, C.; Furman, J.M.; Staab, J. Threat Assessment and Locomotion: Clinical Applications of an Integrated Model of Anxiety and Postural Control. Skull Base 2013, 33, 297–306. [Google Scholar] [CrossRef]
- Wynaden, D.; Tohotoa, J.; Heslop, K.; Al Omari, O. Recognising falls risk in older adult mental health patients and acknowledging the difference from the general older adult population. Collegian 2016, 23, 97–102. [Google Scholar] [CrossRef]
- Pacheco-Unguetti, A.P.; Acosta, A.; Callejas, A.; Lupiáñez, J. Attention and anxiety: Different attentional functioning under state and trait anxiety. Psychol. Sci. 2010, 21, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Hainaut, J.-P.; Caillet, G.; Lestienne, F.G.; Bolmont, B. The role of trait anxiety on static balance performance in control and anxiogenic situations. Gait Posture 2011, 33, 604–608. [Google Scholar] [CrossRef]
- Bolmont, B.; Gangloff, P.; Vouriot, A.; Perrin, P.P. Mood states and anxiety influence abilities to maintain balance control in healthy human subjects. Neurosci. Lett. 2002, 329, 96–100. [Google Scholar] [CrossRef]
- Af Klint, R.; Nielsen, J.B.; Cole, J.; Sinkjaer, T.; Grey, M.J. Within-step modulation of leg muscle activity by afferent feedback in human walking. J. Physiol. 2008, 586, 4643–4648. [Google Scholar] [CrossRef]
- Staab, J. The influence of anxiety on ocular motor control and gaze. Curr. Opin. Neurol. 2014, 27, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Gage, W.H.; Sleik, R.J.; Polych, M.A.; McKenzie, N.C.; Brown, L.A. The allocation of attention during locomotion is altered by anxiety. Exp. Brain Res. 2003, 150, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Sharpe, L.; Abbott, M. A meta-analysis of the relationship between anxiety and attentional control. Clin. Psychol. Rev. 2019, 72, 101754. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Wada, M.; Saitoh, J.; Sunaga, N.; Nagai, M. The effect of anxiety on postural control in humans depends on visual information processing. Neurosci. Lett. 2004, 364, 37–39. [Google Scholar] [CrossRef]
- Ishida, M.; Saitoh, J.; Wada, M.; Nagai, M. Effects of anticipatory anxiety and visual input on postural sway in an aversive situation. Neurosci. Lett. 2010, 474, 1–4. [Google Scholar] [CrossRef]
- Maki, B.; McIlroy, W. Influence of Arousal and Attention on the Control of Postural Sway1. J. Vestib. Res. 1996, 6, 53–59. [Google Scholar] [CrossRef]
- Sibley, K.M.; Carpenter, M.G.; Perry, J.C.; Frank, J.S. Effects of postural anxiety on the soleus H-reflex. Hum. Mov. Sci. 2007, 26, 103–112. [Google Scholar] [CrossRef]
- Heuchert, J.P.; McNair, D.M. Profile of Mood States (POMS 2), 2nd ed.; Multi-Health Systems Inc.: North Tonawanda, NY, USA, 2012. [Google Scholar]
- Li, S.; Cui, L.; Zhu, C.; Li, B.; Zhao, N.; Zhu, T. Emotion recognition using Kinect motion capture data of human gaits. PeerJ 2016, 4, e2364. [Google Scholar] [CrossRef] [Green Version]
- Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture 2017, 55, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility lab to assess balance and gait with synchronized body-worn sensors. J. Bioeng. Biomed. Sci. 2011, Suppl 1, 007. [Google Scholar] [CrossRef]
- Mancini, M.; Chiari, L.; Holmstrom, L.; Salarian, A.; Horak, F.B. Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait Posture 2016, 43, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Freeman, D.L.; Gera, G.; Horak, F.B.; Blackinton, M.T.; Besch, M.; King, L. The Instrumented Test of Sensory Integration for Balance: A Validation Study. J. Geriatr. Phys. Ther. 2018, 41, 77–84. [Google Scholar] [CrossRef]
- Horak, F.; King, L.; Mancini, M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 2015, 95, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Chaikeeree, N.; Saengsirisuwan, V.; Chinsongkram, B.; Boonsinsukh, R. Interaction of age and foam types used in Clinical Test for Sensory Interaction and Balance (CTSIB). Gait Posture 2015, 41, 313–315. [Google Scholar] [CrossRef]
- Hatchett, A.; Armstrong, K.; Parr, B.; Crews, M.; Tant, C. The effect of a curved non-motorized treadmill on running gait length, imbalance and stride angle. Sports 2018, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Simoni, L.; Scarton, A.; Gerli, F.; Macchi, C.; Gori, F.; Pasquini, G.; Pogliaghi, S. Testing the Performance of an Innovative Markerless Technique for Quantitative and Qualitative Gait Analysis. Sensors 2020, 20, 6654. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, B.; Liu, Y.; Chen, Z.; Li, Q.; Wang, C.; Wu, J. Estimation of Poverty Using Random Forest Regression with Multi-Source Data: A Case Study in Bangladesh. Remote Sens. 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Berrar, D. Cross-validation. Encycl. Bioinform. Comput. Biol. 2019, 1, 542–545. [Google Scholar]
- Girard, A. A fast ?Monte-Carlo cross-validation? procedure for large least squares problems with noisy data. Numer. Math. 1989, 56, 1–23. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Xu, Q.-S.; Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [Google Scholar] [CrossRef]
- Raffegeau, T.E.; Fawver, B.; Clark, M.; Engel, B.T.; Young, W.R.; Williams, A.M.; Lohse, K.R.; Fino, P.C. The feasibility of using virtual reality to induce mobility-related anxiety during turning. Gait Posture 2020, 77, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Carlton, L.G.; Rosengren, K.S. Anticipatory Postural Adjustments for Altering Direction During Walking. J. Mot. Behav. 2004, 36, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Annweiler, C.; Dubost, V.; Allali, G.; Kressig, R.W.; Bridenbaugh, S.; Berrut, G.; Assal, F.; Herrmann, F. Stops walking when talking: A predictor of falls in older adults? Eur. J. Neurol. 2009, 16, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.G.; Frank, J.S.; Silcher, C.P.; Peysar, G.W. The influence of postural threat on the control of upright stance. Exp. Brain Res. 2001, 138, 210–218. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Rietdyk, S.; Ishac, M.G. Ankle Muscle Stiffness in the Control of Balance During Quiet Standing. J. Neurophysiol. 2001, 85, 2630–2633. [Google Scholar] [CrossRef]
- Sanders, R.D.; Gillig, P.M. Gait and its assessment in psychiatry. Psychiatry 2010, 7, 38–43. [Google Scholar]
- Mahoney, G.; Martin, J.; Martin, R.; Yager, C.; Smith, M.L.; Grin, Z.; Vogel-Rosbrook, C.; Bradley, D.; Appiah-Kubi, K.O.; Boolani, A. Evidence that feelings of energy and fatigue are associated differently with gait characteristics and balance: An exploratory study. Fatigue Biomed. Health Behav. 2021, 9, 125–138. [Google Scholar] [CrossRef]
- Kadry, A.M.; Torad, A.; Elwan, M.A.; Kakar, R.S.; Bradley, D.; Chaudhry, S.; Boolani, A. Using Machine Learning to Identify Feelings of Energy and Fatigue in Single-Task Walking Gait: An Exploratory Study. Appl. Sci. 2022, 12, 3083. [Google Scholar] [CrossRef]
- Fuller, D.; Smith, M.; Boolani, A. Trait Energy and Fatigue Modify the Effects of Caffeine on Mood, Cognitive and Fine-Motor Task Performance: A Post-Hoc Study. Nutrients 2021, 13, 412. [Google Scholar] [CrossRef]
- Sedgwick, P.; Greenwood, N. Understanding the Hawthorne effect. BMJ 2015, 351, h4672. [Google Scholar] [CrossRef] [Green Version]
Anxious | Not Anxious | ||||||
---|---|---|---|---|---|---|---|
Variable | Relative Importance | Ranking | Mean | SD | Mean | SD | Significant Difference |
Mean turns angle (°) | 0.05 | 1 | 188.30 | 4.17 | 185.87 | 3.43 | Yes |
Variance neck bending in frontal plane (°) | 0.03 | 2 | 1.74 | 1.18 | 2.04 | 1.14 | |
Variance in L arm swing velocity (°/s) | 0.03 | 3 | 45.21 | 45.87 | 53.35 | 37.50 | |
Mean lumbar max. in sagittal plane (°) | 0.02 | 4 | 5.46 | 5.10 | 3.27 | 4.42 | Yes |
Mean lumbar R rotation max. (°) | 0.02 | 5 | 6.91 | 13.07 | 10.88 | 15.11 | |
Variance gait speed between legs (%) | 0.02 | 7 | 0.91 | 0.80 | 1.23 | 0.74 | Yes |
Mean lumbar L bending max. in the frontal plane (°) | 0.02 | 9 | 6.94 | 2.74 | 5.62 | 2.46 | Yes |
Variance step variability between legs (%) | 0.02 | 12 | 8.16 | 5.85 | 11.21 | 7.44 | Yes |
Mean lower limb stance GCT (s) | 0.01 | 15 | 60.52 | 1.51 | 59.94 | 1.48 | Yes |
Variance mid-swing elevation between legs (%) | 0.01 | 17 | 13.88 | 11.97 | 18.98 | 13.94 | Yes |
Variance neck in the sagittal plane range (°) | 0.01 | 18 | 3.31 | 2.01 | 3.77 | 1.37 | Yes |
Mean lumbar in the sagittal plane min. (°) | 0.01 | 20 | -0.66 | 5.02 | -2.96 | 4.52 | Yes |
Mean lumbar L max. rot. (°) | 0.01 | 29 | 4.76 | 12.43 | 0.03 | 15.23 | Yes |
Variance neck rot. range in frontal plane (°) | 0.01 | 41 | 2.78 | 1.74 | 3.80 | 2.95 | Yes |
Mean lumbar bending range in frontal plane (°) | 0.01 | 42 | 9.82 | 3.12 | 8.78 | 3.16 | Yes |
Variance R lower limb terminal double support (% GCT) | 0.01 | 44 | 0.84 | 0.33 | 0.76 | 0.15 | Yes |
Variance toe out angle between legs (%) | 0.01 | 45 | 2.78 | 1.97 | 2.21 | 1.70 | Yes |
Variance neck R max. rot. (°) | 0.01 | 46 | 12.78 | 17.13 | 9.55 | 5.61 | Yes |
Mean turns duration (#) | 0.00 | 58 | 2.17 | 0.19 | 2.23 | 0.18 | Yes |
Mean lumbar coronal ROM (°) | 0.00 | 82 | 6.54 | 2.79 | 5.72 | 1.86 | Yes |
Variance turns angle (°) | 0.00 | 92 | 5.92 | 1.88 | 5.17 | 1.29 | Yes |
Mean neck R L rotation range (°) | 0.00 | 137 | 7.39 | 2.46 | 8.25 | 2.44 | Yes |
Mean R leg swing (% GCT) | 0.00 | 149 | 39.48 | 1.51 | 40.06 | 1.48 | Yes |
Mean L Leg single limb support (% GCT) | 0.00 | 179 | 39.59 | 1.50 | 40.10 | 1.45 | Yes |
Variance in turn duration (s) | 0.00 | 189 | 0.21 | 0.09 | 0.24 | 0.08 | Yes |
Mean neck range in the sagittal plane (°) | 0.00 | 205 | 7.88 | 2.67 | 8.96 | 2.96 | Yes |
Variance in neck L max. rot. (°) | 0.00 | 243 | 12.90 | 17.14 | 9.63 | 5.82 | Yes |
Mean R leg terminal double support (% GCT)) | 0.00 | 257 | 10.58 | 1.34 | 10.01 | 1.41 | Yes |
Variance in trunk ROM in sagittal plane (°) | 0.00 | 260 | 1.06 | 0.35 | 1.19 | 0.43 | Yes |
Variance in trunk ROM in transverse plane (°) | 0.00 | 261 | 1.81 | 0.58 | 2.05 | 1.18 | Yes |
Anxious | Not Anxious | ||||||
---|---|---|---|---|---|---|---|
Variable | Relative Importance | Ranking | Mean | SD | Mean | SD | Significant Difference |
Mean velocity in sagittal plane (m/s) | 0.01 | 39 | 0.18 | 0.26 | 0.11 | 0.08 | Yes |
Sway angle area (°) | 0.00 | 95 | 1.24 | 2.31 | 0.86 | 0.93 | Yes |
RMS sway angle (°) | 0.00 | 100 | 0.52 | 0.62 | 0.37 | 0.20 | Yes |
Mean velocity (m/s) | 0.00 | 141 | 0.19 | 0.26 | 0.12 | 0.10 | Yes |
Jerk in coronal plane (m2/s5) | 0.00 | 144 | 0.41 | 0.34 | 0.57 | 0.82 | Yes |
Acceleration 95% ellipse radius on y-axis (m/s2) | 0.00 | 153 | 0.21 | 0.25 | 0.15 | 0.08 | Yes |
Angle 95% ellipse radius on y-axis (°) | 0.00 | 188 | 1.25 | 1.52 | 0.87 | 0.49 | Yes |
Angle RMS Sway in sagittal plane (°) | 0.00 | 217 | 0.51 | 0.62 | 0.34 | 0.18 | Yes |
Acceleration 95% ellipse sway area (m2/s4) | 0.00 | 265 | 0.04 | 0.07 | 0.02 | 0.03 | Yes |
Acceleration range in coronal plane (m/s2) | 0.00 | 283 | 0.11 | 0.06 | 0.13 | 0.09 | Yes |
Acceleration range (m/s2) | 0.00 | 284 | 0.47 | 0.63 | 0.35 | 0.26 | Yes |
Acceleration range in sagittal plane (m/s2) | 0.00 | 288 | 0.45 | 0.63 | 0.32 | 0.25 | Yes |
Acceleration RMS sway in coronal plane (m/s2) | 0.00 | 292 | 0.02 | 0.01 | 0.02 | 0.02 | Yes |
Acceleration RMS sway (m/s2) | 0.00 | 293 | 0.09 | 0.10 | 0.06 | 0.03 | Yes |
Acceleration RMS sway in the sagittal plane (m/s2) | 0.00 | 295 | 0.09 | 0.10 | 0.06 | 0.03 | Yes |
Angle Durations (s) | 0.00 | 300 | 29.99 | 0.00 | 29.99 | 0.00 | Yes |
Angle RMS sway in coronal plane (°) | 0.00 | 302 | 0.11 | 0.05 | 0.13 | 0.11 | Yes |
Anxious | Not Anxious | ||||||
---|---|---|---|---|---|---|---|
Variable | Relative Importance | Ranking | Mean | SD | Mean | SD | Significant Difference |
Acceleration 95% ellipse rot (m/s2) | 0.01 | 32 | 1.55 | 0.14 | 1.62 | 0.25 | Yes |
Jerk in coronal plane (m2/s5) | 0.00 | 148 | 0.37 | 0.28 | 0.54 | 0.67 | Yes |
Sway area rot (°) | 0.00 | 165 | 1.55 | 0.14 | 1.62 | 0.25 | Yes |
Mean velocity in sagittal plane (m/s) | 0.00 | 172 | 0.10 | 0.05 | 0.12 | 0.05 | Yes |
Angle durations (s) | 0.00 | 174 | 29.99 | 0.00 | 29.99 | 0.00 | Yes |
Anxious | Not Anxious | ||||||
---|---|---|---|---|---|---|---|
Variable | Relative Importance | Ranking | Mean | SD | Mean | SD | Significant Difference |
Velocity range in coronal plane (m/s2) | 0.02 | 8 | 0.17 | 0.05 | 0.21 | 0.07 | Yes |
Frequency dispersion | 0.01 | 16 | 0.66 | 0.06 | 0.68 | 0.04 | Yes |
Acceleration 95% ellipse radius on x-axis (m/s2) | 0.01 | 19 | 0.07 | 0.02 | 0.08 | 0.03 | Yes |
Centroidal frequency in coronal plane (Hz) | 0.01 | 36 | 1.09 | 0.15 | 1.00 | 0.24 | Yes |
Sway angle area radius in coronal plane (°) | 0.01 | 40 | 0.40 | 0.10 | 0.49 | 0.15 | Yes |
RMS sway angle in coronal plane ° | 0.01 | 43 | 0.18 | 0.05 | 0.21 | 0.07 | Yes |
Frequency dispersion in sagittal plane | 0.00 | 154 | 0.69 | 0.04 | 0.71 | 0.04 | Yes |
Acceleration RMS sway in coronal plane (m/s2) | 0.00 | 176 | 0.03 | 0.01 | 0.04 | 0.01 | Yes |
Acceleration 95% ellipse sway area (m2/s4) | 0.00 | 267 | 0.04 | 0.02 | 0.05 | 0.03 | Yes |
Jerk in coronal plane (m2/s5) | 0.00 | 271 | 0.78 | 0.47 | 0.99 | 0.82 | Yes |
Jerk in sagittal plane (m2/s5) | 0.00 | 272 | 1.56 | 0.88 | 1.92 | 1.75 | Yes |
Acceleration range (m/s2) | 0.00 | 286 | 0.39 | 0.12 | 0.41 | 0.13 | Yes |
Angle 95% ellipse radius in y-axis (°) | 0.00 | 298 | 0.97 | 0.38 | 0.98 | 0.33 | Yes |
Angle RMS sway in sagittal plane (°) | 0.00 | 305 | 0.39 | 0.16 | 0.39 | 0.14 | Yes |
Angle sway area (°2) | 0.00 | 306 | 1.27 | 0.64 | 1.59 | 0.95 | Yes |
Anxious | Not Anxious | ||||||
---|---|---|---|---|---|---|---|
Variable | Relative Importance | Ranking | Mean | SD | Mean | SD | Significant Difference |
Acceleration 95% ellipse rot (m/s2) | 0.02 | 13 | 1.51 | 0.30 | 1.63 | 0.25 | Yes |
Frequency dispersion in coronal plane | 0.00 | 122 | 0.63 | 0.07 | 0.65 | 0.05 | Yes |
Rot sway area (°) | 0.00 | 123 | 1.51 | 0.30 | 1.63 | 0.25 | Yes |
Jerk in coronal plane (m2/s5) | 0.00 | 140 | 2.09 | 1.31 | 2.93 | 3.24 | Yes |
Angle durations | 0.00 | 230 | 29.99 | 0.00 | 29.99 | 0.00 | Yes |
Acceleration RMS sway in sagittal plane (m/s2) | 0.00 | 296 | 0.10 | 0.03 | 0.11 | 0.04 | Yes |
Angle 95% ellipse radius in y-axis (°) | 0.00 | 299 | 1.49 | 0.45 | 1.57 | 0.58 | Yes |
Angle RMS sway (°) | 0.00 | 304 | 0.69 | 0.20 | 0.72 | 0.24 | Yes |
Angle sway area (°2) | 0.00 | 307 | 3.77 | 2.09 | 4.15 | 2.56 | Yes |
Jerk in coronal plane (m2/s5) | 0.00 | 271 | 0.78 | 0.47 | 0.99 | 0.82 | Yes |
Jerk in sagittal plane (m2/s5) | 0.00 | 272 | 1.56 | 0.88 | 1.92 | 1.75 | Yes |
Acceleration range (m/s2) | 0.00 | 286 | 0.39 | 0.12 | 0.41 | 0.13 | Yes |
Angle 95% ellipse radius in y-axis (°) | 0.00 | 298 | 0.97 | 0.38 | 0.98 | 0.33 | Yes |
Angle RMS sway in sagittal plane (°) | 0.00 | 305 | 0.39 | 0.16 | 0.39 | 0.14 | Yes |
Angle sway area (°2) | 0.00 | 306 | 1.27 | 0.64 | 1.59 | 0.95 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stark, M.; Huang, H.; Yu, L.-F.; Martin, R.; McCarthy, R.; Locke, E.; Yager, C.; Torad, A.A.; Kadry, A.M.; Elwan, M.A.; et al. Identifying Individuals Who Currently Report Feelings of Anxiety Using Walking Gait and Quiet Balance: An Exploratory Study Using Machine Learning. Sensors 2022, 22, 3163. https://doi.org/10.3390/s22093163
Stark M, Huang H, Yu L-F, Martin R, McCarthy R, Locke E, Yager C, Torad AA, Kadry AM, Elwan MA, et al. Identifying Individuals Who Currently Report Feelings of Anxiety Using Walking Gait and Quiet Balance: An Exploratory Study Using Machine Learning. Sensors. 2022; 22(9):3163. https://doi.org/10.3390/s22093163
Chicago/Turabian StyleStark, Maggie, Haikun Huang, Lap-Fai Yu, Rebecca Martin, Ryan McCarthy, Emily Locke, Chelsea Yager, Ahmed Ali Torad, Ahmed Mahmoud Kadry, Mostafa Ali Elwan, and et al. 2022. "Identifying Individuals Who Currently Report Feelings of Anxiety Using Walking Gait and Quiet Balance: An Exploratory Study Using Machine Learning" Sensors 22, no. 9: 3163. https://doi.org/10.3390/s22093163
APA StyleStark, M., Huang, H., Yu, L.-F., Martin, R., McCarthy, R., Locke, E., Yager, C., Torad, A. A., Kadry, A. M., Elwan, M. A., Smith, M. L., Bradley, D., & Boolani, A. (2022). Identifying Individuals Who Currently Report Feelings of Anxiety Using Walking Gait and Quiet Balance: An Exploratory Study Using Machine Learning. Sensors, 22(9), 3163. https://doi.org/10.3390/s22093163