Strain Modal Testing with Fiber Bragg Gratings for Automotive Applications †
Abstract
:1. Introduction
2. Theoretical Background
2.1. Strain Modal Analysis
2.2. Fiber Bragg Gratings
3. Materials and Methods
3.1. Experimental Setup
3.2. Synchronization Procedure
4. Results
4.1. FBG vs. SG
4.2. FRF vs. SFRF
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
Acc | Accelerometer |
CFRP | Carbon Fiber Reinforced Polymer |
DAQ | Data Acquisition System |
DMT | Displacement Modal Testing |
EFPI | Extrinsic Fabry-Perot interferometric |
EMA | Experimental Modal Analysis |
FBG | Fiber Bragg Grating |
FEM | Finite Element Method |
FRF | Frequency Response Function |
Ham | Hammer |
ICP | Integrated Circuit-Piezoelectric |
IEPE | Integrated Electronic Piezoelectric |
LSCE | Least-Squares Complex Exponential |
OMA | Operational Modal Analysis |
SFRF | Strain Frequency Response Function |
SG | Strain Gauge |
SHM | Structural Health Monitoring |
SMT | Strain Modal Testing |
References
- Peeters, M.; Kerschen, G.; Golinval, J.C. Dynamic Testing of Nonlinear Vibrating Structures Using Nonlinear Normal Modes. J. Sound Vib. 2011, 330, 486–509. [Google Scholar] [CrossRef] [Green Version]
- Ewins, D.J. Modal Testing: Theory, Practice, and Application, 2nd ed.; Mechanical engineering research studies; Research Studies Press: Baldock, UK; Philadelphia, PA, USA, 2000; ISBN 978-0-86380-218-8. [Google Scholar]
- Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing; Katholieke Univ. Leuven, Departement Werktuigkunde: Leuven, Belgium, 2005; ISBN 978-90-73802-61-2. [Google Scholar]
- Silva, J.M.M.; Maia, N.M.M. (Eds.) Modal Analysis and Testing; Springer: Dordrecht, The Netherlands, 1999; ISBN 978-0-7923-5894-7. [Google Scholar]
- Martini, A.; Troncossi, M.; Vincenzi, N. Structural and Elastodynamic Analysis of Rotary Transfer Machines by Finite Element Model. JSSCM 2017, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. 1996; p. LA-13070-MS. Available online: https://www.osti.gov/biblio/249299 (accessed on 8 November 2021).
- Carden, E.P.; Fanning, P. Vibration Based Condition Monitoring: A Review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Maia, N.M.M.; Silva, J.M.M.; Almas, E.A.M.; Sampaio, R.P.C. Damage Detection in Structures: From Mode Shape to Frequency Response Function Methods. Mech. Syst. Signal Process. 2003, 17, 489–498. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, J.; Wu, G.; Wu, Z. Comprehensive Comparison of Macro-Strain Mode and Displacement Mode Based on Different Sensing Technologies. Mech. Syst. Signal Process. 2015, 50–51, 563–579. [Google Scholar] [CrossRef]
- Dos Santos, F.L.M.; Peeters, B.; Gielen, L.; Desmet, W.; Góes, L.C.S. The Use of Fiber Bragg Grating Sensors for Strain Modal Analysis. In Topics in Modal Analysis; Mains, M., Ed.; Conference Proceedings of the Society for Experimental Mechanics Series; Springer International Publishing: Cham, Switzerland, 2015; Volume 10, pp. 93–101. ISBN 978-3-319-15250-9. [Google Scholar]
- Bernasconi, O.; Ewins, D.J. Modal Strain/Stress Fields. Int. J. Anal. Exp. Modal Anal. 1989, 4, 68–76. [Google Scholar]
- Bernasconi, O.; Ewins, D.J. Application of Strain Modal Testing to Real Structures. In Proceedings of the 7th International Modal Analysis Conference, Las Vegas, NV, USA, 30 January–2 February 1989; pp. 1453–1464. [Google Scholar]
- Yam, L.Y.; Leung, T.P.; Li, D.B.; Xue, K.Z. Theoretical and Experimental Study of Modal Strain Analysis. J. Sound Vib. 1996, 191, 251–260. [Google Scholar] [CrossRef]
- Mucchi, E. On the Comparison between Displacement Modal Testing and Strain Modal Testing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 3389–3396. [Google Scholar] [CrossRef]
- Kranjc, T.; Slavič, J.; Boltežar, M. A Comparison of Strain and Classic Experimental Modal Analysis. J. Vib. Control 2016, 22, 371–381. [Google Scholar] [CrossRef]
- Kranjc, T.; Slavič, J.; Boltežar, M. The Mass Normalization of the Displacement and Strain Mode Shapes in a Strain Experimental Modal Analysis Using the Mass-Change Strategy. J. Sound Vib. 2013, 332, 6968–6981. [Google Scholar] [CrossRef]
- Marques dos Santos, F.L.; Peeters, B. On the Use of Strain Sensor Technologies for Strain Modal Analysis: Case Studies in Aeronautical Applications. Rev. Sci. Instrum. 2016, 87, 102506. [Google Scholar] [CrossRef] [PubMed]
- Peeters, B.; dos Santos, F.L.M.; Pereira, A.; Araujo, F. On the Use of Optical Fiber Bragg Grating (FBG) Sensor Technology for Strain Modal Analysis; American Institute of Physics Inc.: Ancona, Italy, 2014; Volume 1600, pp. 39–49. [Google Scholar]
- Zhou, Y.; Tao, J. Theoretical and Numerical Investigation of Stress Mode Shapes in Multi-Axial Random Fatigue. Mech. Syst. Signal Process. 2019, 127, 499–512. [Google Scholar] [CrossRef]
- Sestieri, A. Structural Dynamic Modification. Sadhana 2000, 25, 247–259. [Google Scholar] [CrossRef]
- Avitabile, P. Twenty Years of Structural Dynamic Modification—A Review. Sound Vib. 2003, 37, 14–27. [Google Scholar]
- Zhou, Y.; Zhang, Y.; Zeng, W.; Sun, Y. Fast Modification-Aimed Stress Modal Analysis of Thin Plates with Holes/Notches. Eng. Struct. 2021, 238, 112248. [Google Scholar] [CrossRef]
- Dos Santos, F.L.M.; Peeters, B.; Van der Auweraer, H.; Desmet, W.; Sandoval Góes, L.C. Strain-Based Experimental Modal Analysis: Use of Mode Curvature and Strain-to-Displacement Relations. In Proceedings of the International Conference on Structural Engineering Dynamics, Lagos, Portugal, 22–24 June 2015. [Google Scholar]
- Brincker, R.; Ventura, C.E. Introduction to Operational Modal Analysis: Brincker/Introduction to Operational Modal Analysis; John Wiley & Sons, Ltd.: Chichester, UK, 2015; ISBN 978-1-118-53514-1. [Google Scholar]
- Au, S.-K. Operational Modal Analysis; Springer: Singapore, 2017; ISBN 978-981-10-4117-4. [Google Scholar]
- Parloo, E.; Verboven, P.; Guillaume, P.; Van Overmeire, M. Sensitivity-Based Operational Mode Shape Normalisation. Mech. Syst. Signal Process. 2002, 16, 757–767. [Google Scholar] [CrossRef]
- López-Aenlle, M.; Fernández, P.; Brincker, R.; Fernández-Canteli, A. Erratum to “Scaling-Factor Estimation Using an Optimized Mass-Change Strategy”. Mech. Syst. Signal Process. 2010, 24, 3061–3074. [Google Scholar] [CrossRef]
- Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors 2021, 21, 341. [Google Scholar] [CrossRef]
- Di Sante, R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef]
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical Fiber Sensing for Marine Environment and Marine Structural Health Monitoring: A Review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Murphy, K.A.; Poland, S.H. Fiber Optic Strain and Pressure Sensors; Sater, J.M., Ed.; SPIE: Bellingham, DC, USA, 1997; p. 352. [Google Scholar]
- Olyaee, S.; Dehghani, A.A. Ultrasensitive Pressure Sensor Based on Point Defect Resonant Cavity in Photonic Crystal. Sens. Lett. 2013, 11, 1854–1859. [Google Scholar] [CrossRef]
- Lawson, N.J.; Correia, R.; James, S.W.; Partridge, M.; Staines, S.E.; Gautrey, J.E.; Garry, K.P.; Holt, J.C.; Tatam, R.P. Development and Application of Optical Fibre Strain and Pressure Sensors for In-Flight Measurements. Meas. Sci. Technol. 2016, 27, 104001. [Google Scholar] [CrossRef]
- Troncossi, M.; Taddia, S.; Rivola, A.; Martini, A. Experimental Characterization of a High-Damping Viscoelastic Material Enclosed in Carbon Fiber Reinforced Polymer Components. Appl. Sci. 2020, 10, 6193. [Google Scholar] [CrossRef]
- Odabaşı, V.; Maglio, S.; Martini, A.; Sorrentino, S. Static Stress Analysis of Suspension Systems for a Solar-Powered Car. FME Trans. 2019, 47, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Chiesura, G.; Luyckx, G.; Voet, E.; Van Paepegem, W.; Degrieck, J.; Kaufmann, M.; Martens, T.; Lamberti, A.; Vanlanduit, S. Production Monitoring of a RTM Automotive Control Arm by Means of Fibre Optic Sensors. In Proceedings of the 6th International Conference on Optical Measurement Techniques for Structures and Systems, Antwerp, Belgium, 8–9 April 2015; Shaker Publishing: Maastricht, The Netherlands, 2015; pp. 21–30. [Google Scholar]
- Manzo, N.R.; Callado, G.T.; Cordeiro, C.M.; Vieira, L.C.M.J. Embedding Optical Fiber Bragg Grating (FBG) Sensors in 3D Printed Casings. Opt. Fiber Technol. 2019, 53, 102015. [Google Scholar] [CrossRef]
- Falcetelli, F.; Di Sante, R.; Troiani, E. Strategies for Embedding Optical Fiber Sensors in Additive Manufacturing Structures. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2021; Volume 128, pp. 362–371. ISBN 978-3-030-64907-4. [Google Scholar]
- Bastianini, F.; Bochenski, P.; Di Sante, R.; Falcetelli, F.; Rossi, L.; Bolognini, G. Strain Transfer Estimation for Complex Surface-Bonded Optical Fibers in Distributed Sensing Applications. In Proceedings of the 2020 Italian Conference on Optics and Photonics (ICOP), Parma, Italy, 9–11 September 2020; IEEE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Falcetelli, F.; Rossi, L.; Di Sante, R.; Bolognini, G. Strain Transfer in Surface-Bonded Optical Fiber Sensors. Sensors 2020, 20, 3100. [Google Scholar] [CrossRef]
- Bastianini, F.; Di Sante, R.; Falcetelli, F.; Marini, D.; Bolognini, G. Optical Fiber Sensing Cables for Brillouin-Based Distributed Measurements. Sensors 2019, 19, 5172. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed Optical Fiber Sensing: Review and Perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Ren, L. Health Monitoring System for Offshore Platform with Fiber Bragg Grating Sensors. Opt. Eng 2006, 45, 084401. [Google Scholar] [CrossRef]
- Cusano, A.; Capoluongo, P.; Campopiano, S.; Cutolo, A.; Giordano, M.; Felli, F.; Paolozzi, A.; Caponero, M. Experimental Modal Analysis of an Aircraft Model Wing by Embedded Fiber Bragg Grating Sensors. IEEE Sens. J. 2006, 6, 67–77. [Google Scholar] [CrossRef]
- Lamberti, A.; Vanlanduit, S.; Chiesura, G.; Luyckx, G.; Degrieck, J.; Kaufmann, M. Modal Analysis of a Composite Automotive Component Using Fibre Bragg Grating Sensors Embedded via Resin Transfer Moulding. In Proceedings of the 6th International Conference on Optical Measurement Techniques for Structures and Systems, Antwerp, Belgium, 8–9 April 2015; Shaker Publishing: Maastricht, The Netherlands, 2015; pp. 161–169. [Google Scholar]
- Lamberti, A.; Chiesura, G.; Luyckx, G.; Degrieck, J.; Kaufmann, M.; Vanlanduit, S. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors. Sensors 2015, 15, 27174–27200. [Google Scholar] [CrossRef] [PubMed]
- Falcetelli, F.; Martini, A.; Rivola, A.; Di Sante, R.; Troncossi, M. Strain Modal Testing with Fiber Bragg Grating Sensors of Composite Components for Automotive Applications. In Proceedings of the 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy, 2–3 July 2021; IEEE: New York, NY, USA, 2021; pp. 181–186. [Google Scholar]
- Inman, D.J. Engineering Vibration, 4th ed.; Pearson: Boston, MA, USA, 2014; ISBN 978-0-13-287169-3. [Google Scholar]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method. Opt. Lett. 1989, 14, 823. [Google Scholar] [CrossRef] [PubMed]
- Slattery, S.A.; Nikogosyan, D.N.; Brambilla, G. Fiber Bragg Grating Inscription by High-Intensity Femtosecond UV Laser Light: Comparison with Other Existing Methods of Fabrication. J. Opt. Soc. Am. B 2005, 22, 354. [Google Scholar] [CrossRef]
- Cusano, A.; Cutolo, A.; Albert, J. (Eds.) Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation; Bentham Science Publishers: Sharjah, U.A.E, 2012; ISBN 978-1-60805-084-0. [Google Scholar]
- Kashyap, R. Fiber Bragg Gratings, 2nd ed.; Academic Press: Burlington, MA, USA, 2010; ISBN 978-0-12-372579-0. [Google Scholar]
- Werneck, M.M.; Allil, R.C.S.B.; Ribeiro, B.A.; de Nazaré, F.V.B. A Guide to Fiber Bragg Grating Sensors. In Current Trends in Short-and Long-Period Fiber Gratings; Cuadrado-Laborde, C., Ed.; IntechOpen Limited: London, UK, 2013; ISBN 978-953-51-1131-3. [Google Scholar]
- Ashry, I.; Elrashidi, A.; Mahros, A.; Alhaddad, M.; Elleithy, K. Investigating the Performance of Apodized Fiber Bragg Gratings for Sensing Applications. In Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, Bridgeport, CT, USA, 3–5 April 2014; IEEE: New York, NY, USA, 2014; pp. 1–5. [Google Scholar]
- Shekar, P.V.R.; Latha, D.M.; Kumari, K.; Pisipati, V.G.K.M. Optimal Parameters for Fiber Bragg Gratings for Sensing Applications: A Spectral Study. SN Appl. Sci. 2021, 3, 666. [Google Scholar] [CrossRef]
- Khalid, K.S.; Zafrullah, M.; Bilal, S.M.; Mirza, M.A. Simulation and Analysis of Gaussian Apodized Fiber Bragg Grating Strain Sensor. J. Opt. Technol. 2012, 79, 667. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, K.; Pureur, D.; Mugnier, A. Fibre Bragg Gratings. In Wavelength Filters in Fibre Optics; Venghaus, H., Ed.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germaby, 2006; Volume 123, pp. 189–269. ISBN 978-3-540-31769-2. [Google Scholar]
- Albert, J.; Shao, L.-Y.; Caucheteur, C. Tilted Fiber Bragg Grating Sensors: Tilted Fiber Bragg Grating Sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Rao, Y.J. Fiber Bragg Grating Sensors: Principles and Applications. In Optical Fiber Sensor Technology; Grattan, K.T.V., Meggitt, B.T., Eds.; Springer: Boston, MA, USA, 1998; pp. 355–379. ISBN 978-1-4613-7651-4. [Google Scholar]
- Morey, W.W.; Meltz, G.; Glenn, W.H. Fiber Optic Bragg Grating Sensors; Proc. SPIE 1169, Fiber Optic and Laser Sensors VII; DePaula, R.P., Udd, E., Eds.; SPIE: Bellingham, DC, USA, 1990; p. 98. [Google Scholar]
- Othonos, A. Fiber Bragg Gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Campanella, C.; Cuccovillo, A.; Campanella, C.; Yurt, A.; Passaro, V. Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications. Sensors 2018, 18, 3115. [Google Scholar] [CrossRef] [Green Version]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber Grating Sensors. J. Lightwave Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.G.; Archambault, J.-L.; Reekie, L.; Dakin, J.P. Discrimination between Strain and Temperature Effects Using Dual-Wavelength Fibre Grating Sensors. Electron. Lett. 1994, 30, 1085–1087. [Google Scholar] [CrossRef] [Green Version]
- Ondasolare. Available online: https://ondasolare.com/il-progetto-2 (accessed on 8 November 2021).
- American Solar Challenge|Organizing Solar Car Racing in North America. Available online: https://www.americansolarchallenge.org/ (accessed on 8 November 2021).
- Minak, G.; Brugo, T.M.; Fragassa, C.; Pavlovic, A.; de Camargo, F.V.; Zavatta, N. Structural Design and Manufacturing of a Cruiser Class Solar Vehicle. JoVE 2019, 143, e58525. [Google Scholar] [CrossRef]
- World Solar Challenge. Available online: https://www.worldsolarchallenge.org/ (accessed on 8 November 2021).
- Fragassa, C.; Pavlovic, A.; Minak, G. On the Structural Behaviour of a CFRP Safety Cage in a Solar Powered Electric Vehicle. Compos. Struct. 2020, 252, 112698. [Google Scholar] [CrossRef]
- Sorrentino, S.; De Felice, A.; Grosso, P.; Minak, G. First Assessment on Suspension Parameter Optimization for a Solar—Powered Vehicle. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kragujevac, Serbia, 5–7 September 2019; Volume 659, p. 012080. [Google Scholar] [CrossRef]
- Pavlovic, A.; Sintoni, D.; Fragassa, C.; Minak, G. Multi-Objective Design Optimization of the Reinforced Composite Roof in a Solar Vehicle. Appl. Sci. 2020, 10, 2665. [Google Scholar] [CrossRef]
- ISO 7626-5:2019. Mechanical Vibration and Shock—Experimental Determination of Mechanical Mobility—Part 5: Measurements Using Impact Excitation with an Exciter Which is Not Attached to the Structure. Available online: https://www.iso.org/standard/68735.html (accessed on 8 November 2021).
- Technobis FIber Optic Sensing Solutions-Product Catalog. Available online: https://www.technobis.com/files/9715/2145/8747/2018-Catalog-TechnobisFiberOpticSensingSolutions.pdf.pdf (accessed on 8 November 2021).
- Pavlović, A.; Sintoni, D.; Minak, G.; Fragassa, C. On the Modal Behaviour of Ultralight Composite Sandwich Automotive Panels. Compos. Struct. 2020, 248, 112523. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, W.; Zhang, H.; Liu, B.; Zhao, J.; Tu, Q.; Kai, G.; Dong, X. An Embedded FBG Sensor for Simultaneous Measurement of Stress and Temperature. IEEE Photon. Technol. Lett. 2006, 18, 154–156. [Google Scholar] [CrossRef]
- Jung, J.; Nam, H.; Lee, B.; Byun, J.O.; Kim, N.S. Fiber Bragg Grating Temperature Sensor with Controllable Sensitivity. Appl. Opt. 1999, 38, 2752. [Google Scholar] [CrossRef]
- Lin, Z.; Feng, X.; Zhang, Y.; Lan, B.; Zhang, W.; Liao, C.; Wang, Y.; Qiu, J.; Zhou, S. Multicomponent Photonic Glass for Temperature Insensitive Fiber Probe. J. Lightwave Technol. 2020, 38, 4470–4477. [Google Scholar] [CrossRef]
- Shen, C.; Zhong, C. Novel Temperature-Insensitive Fiber Bragg Grating Sensor for Displacement Measurement. Sens. Actuators A Phys. 2011, 170, 51–54. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, Y.; Lai, S. Simultaneous Measurement of Down-Hole High Pressure and Temperature with a Bulk-Modulus and FBG Sensor. IEEE Photon. Technol. Lett. 2002, 14, 1584–1586. [Google Scholar] [CrossRef]
- Frazão, O.; Santos, J.L. Simultaneous Measurement of Strain and Temperature Using a Bragg Grating Structure Written in Germanosilicate Fibres. J. Opt. A Pure Appl. Opt. 2004, 6, 553–556. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, Y.H.; Mudhana, G.; Lee, B.H. Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair. IEEE Photon. Technol. Lett. 2008, 20, 1290–1292. [Google Scholar] [CrossRef]
- Chehura, E.; James, S.W.; Tatam, R.P. Temperature and Strain Discrimination Using a Single Tilted Fibre Bragg Grating. Opt. Commun. 2007, 275, 344–347. [Google Scholar] [CrossRef] [Green Version]
- Di Sante, R.; Bastianini, F. Temperature-Compensated Fibre Bragg Grating-based Sensor with Variable Sensitivity. Opt. Lasers Eng. 2015, 75, 5–9. [Google Scholar] [CrossRef]
- Tanaka, N.; Okabe, Y.; Takeda, N. Temperature-Compensated Strain Measurement Using Fiber Bragg Grating Sensors Embedded in Composite Laminates. Smart Mater. Struct. 2003, 12, 940–946. [Google Scholar] [CrossRef]
- Luyckx, G.; De Waele, W.; Degrieck, J.; Paepegem, W.V.; Vlekken, J.; Vandamme, S.; Chah, K. Three-Dimensional Strain and Temperature Monitoring of Composite Laminates. Insight-Non-Destr. Test. Cond. Monit. 2007, 49, 10–16. [Google Scholar] [CrossRef]
- Shin, K.; Hammond, J.K. Fundamentals of Signal Processing for Sound and Vibration Engineers; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2008; ISBN 978-0-470-51188-6. [Google Scholar]
Sensor | X (mm) | Y (mm) |
---|---|---|
Acc 1 1 | 15 | 15 |
Acc 2 1 | 15 | 530 |
Acc 3 1 | 145 | 15 |
Acc 4 1 | 145 | 530 |
Acc 5 1 | 15 | 655 |
Acc 6 1 | 210 | 15 |
FBG 1 | 200 | 785 |
FBG 2 | 270 | 600 |
FBG 3 | 200 | 720 |
FBG 4 | 15 | 720 |
FBG 5 | 270 | 200 |
FBG 6 | 200 | 340 |
FBG 7 | 15 | 340 |
FBG 8 | 200 | 200 |
SG | 200 | 200 |
Ham 1 | 530 | 15 |
Ham 2 | 530 | 1550 |
Ham 3 | 15 | 1550 |
Ham 4 | 145 | 270 |
Ham 5 | 270 | 15 |
Ham 6 | 15 | 140 |
Ham 7 | 145 | 140 |
Ham 8 | 270 | 140 |
Ham 9 | 15 | 270 |
Ham 10 | 270 | 270 |
Ham 11 | 15 | 400 |
Ham 12 | 145 | 400 |
Ham 13 | 270 | 400 |
Ham 14 | 270 | 530 |
Ham 15 | 145 | 655 |
Ham 16 | 270 | 655 |
Ham 17 | 15 | 785 |
Ham 18 | 145 | 785 |
Ham 19 | 270 | 785 |
Excitation Points | Repetitions | Hammer Impacts |
---|---|---|
Sensor Type | Number | Sensor Signals |
Accelerometers | 6 | |
Fiber Bragg Gratings | 8 | |
Strain gauge | 1 | |
Tot. Post-processed signals |
Mode | Accelerometers [Hz] | FBGs (Hz (%)) | FEM (Hz (%) |
---|---|---|---|
I | 16.7 | 17.0 (+1.8%) | 15.3 (−8.4%) |
II | 20.1 | 21.0 (+4.5%) | 18.7 (−7.0%) |
III | 42.6 | 42.0 (−1.4%) | 40.1 (−5.9%) |
IV | 46.5 | 46.0 (−1.1%) | 41.7 (−10.3%) |
V | 68.6 | 69.5 (+1.3%) | 65.4 (−4.7%) |
VI | 101.8 | 102.0 (+0.2%) | 81.9 (–19.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcetelli, F.; Martini, A.; Di Sante, R.; Troncossi, M. Strain Modal Testing with Fiber Bragg Gratings for Automotive Applications. Sensors 2022, 22, 946. https://doi.org/10.3390/s22030946
Falcetelli F, Martini A, Di Sante R, Troncossi M. Strain Modal Testing with Fiber Bragg Gratings for Automotive Applications. Sensors. 2022; 22(3):946. https://doi.org/10.3390/s22030946
Chicago/Turabian StyleFalcetelli, Francesco, Alberto Martini, Raffaella Di Sante, and Marco Troncossi. 2022. "Strain Modal Testing with Fiber Bragg Gratings for Automotive Applications" Sensors 22, no. 3: 946. https://doi.org/10.3390/s22030946