Wavelength-Tunable L-Band High Repetition Rate Erbium-Doped Fiber Laser Based on Dissipative Four-Wave Mixing
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussions
3.1. HRR Output with the Repetition Rate of ~126 GHz
3.2. HRR Output with the Repetition Rate of ~71 GHz
3.3. Noise-like Pulse Generation
3.4. Stability Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, N.-K.; Lin, J.-W.; Liu, F.-Z.; Liaw, S.-K. Wavelength-Tunable Er+3-Doped fs Mode-Locked Fiber Laser Using Short-Pass Edge Filters. IEEE Photonics Technol. Lett. 2010, 22, 700–702. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photonics 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Brida, D.; Krauss, G.; Sell, A.; Leitenstorfer, A. Ultrabroadband Er:fiber lasers. Laser Photonics Rev. 2014, 8, 409–428. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, A.P.; Shen, Y.H.; Tam, H.Y.; Wai, P.K. Widely tunable mode-locked fiber laser using carbon nanotube and LPG W-shaped filter. Opt. Lett. 2015, 40, 4329–4332. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, J.; Wang, L.; Cheng, Z. Wavelength tunable L Band polarization-locked vector soliton fiber laser based on SWCNT-SA and CFBG. Opt. Commun. 2018, 412, 55–59. [Google Scholar] [CrossRef]
- Huang, Q.; Zou, C.; Mou, C.; Guo, X.; Yan, Z.; Zhou, K.; Zhang, L. 23 MHz widely wavelength-tunable L-band dissipative soliton from an all-fiber Er-doped laser. Opt. Express 2019, 27, 20028–20036. [Google Scholar] [CrossRef]
- Zhang, Y. C + L band wavelength and bandwidth tunable fiber laser incorporating carbon nanotubes. Mod. Phys. Lett. B 2020, 34, 2050340. [Google Scholar] [CrossRef]
- Lin, G.-R.; Chang, J.-Y. Femtosecond mode-locked Erbium-doped fiber ring laser with intra-cavity loss controlled full L-band wavelength tunability. Opt. Express 2007, 15, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.; Frazão, O.; Teixeira, A.L.J.; Gomes, L.A.; da Rocha, J.R.F.; Salgado, H.M. Tunable L-band erbium-doped fibre ring laser by means of induced cavity loss using a fibre taper. Appl. Phys. B 2003, 77, 139–142. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, Z.; Wang, D.N.; Yang, F.; Li, L. Generation of wavelength-tunable and coherent dual-wavelength solitons in the C + L band by controlling the intracavity loss. Photonics Res. 2019, 7, 853–861. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, Q.; Ma, Y.; Liao, D.; Huang, Z.; Dai, L.; Liu, Y.; Mou, C.; Al Araimi, M.; Rozhin, A. Wavelength-tunable L-band mode-locked fiber laser using a long-period fiber grating. Opt. Express 2021, 29, 26332–26339. [Google Scholar] [CrossRef]
- Ling, Y.; Huang, Q.; Zou, C.; Xing, Z.; Yan, Z.; Zhao, C.; Zhou, K.; Zhang, L.; Mou, C. L-Band GHz Femtosecond Passively Harmonic Mode-Locked Er-Doped Fiber Laser Based on Nonlinear Polarization Rotation. IEEE Photonics J. 2019, 11, 1–7. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, Z.; Al Araimi, M.; Rozhin, A.; Mou, C. 2.4 GHz L-Band Passively Harmonic Mode Locked Er-Doped Fiber Laser Based on Carbon Nanotubes Film. IEEE Photonics Technol. Lett. 2020, 32, 121–124. [Google Scholar] [CrossRef]
- Ling, Y.; Huang, Q.; Song, Q.; Yan, Z.; Mou, C.; Zhou, K.; Zhang, L. Intracavity birefringence-controlled GHz-tuning range passively harmonic mode-locked fiber laser based on NPR. Appl. Opt. 2020, 59, 6724–6728. [Google Scholar] [CrossRef]
- Du, W.; Xia, H.; Li, H.; Liu, C.; Wang, P.; Liu, Y. High-repetition-rate all-fiber femtosecond laser with an optical integrated component. Appl. Opt. 2017, 56, 2504–2509. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Z.; Cong, Z.; Gao, G.; Zhang, A.; Guo, H.; Yao, G.; Liu, Z. Stable 5-GHz fundamental repetition rate passively SESAM mode-locked Er-doped silica fiber lasers. Opt. Express 2021, 29, 9021–9029. [Google Scholar] [CrossRef] [PubMed]
- Quiroga-Teixeiro, M. Passive mode locking by dissipative four-wave mixing. J. Opt. Soc. Am. B 1998, 15, 1315–1321. [Google Scholar] [CrossRef]
- Sylvestre, T.; Coen, S.; Emplit, P.; Haelterman, M. Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation. Opt. Lett. 2002, 27, 482–484. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, C.; Benabid, F.; Chiang, K.S.; Xiao, L. Robust Mode Matching between Structurally Dissimilar Optical Fiber Waveguides. ACS Photonics 2021, 8, 857–863. [Google Scholar] [CrossRef]
- Schröder, J.; Coen, S.; Vanholsbeeck, F.; Sylvestre, T. Dynamics of an ultrahigh-repetition-rate of a passively mode locked raman fiber laser. J. Opt. Soc. Am. B 2008, 25, 1178–1186. [Google Scholar] [CrossRef]
- Schröder, J.; Coen, S.; Vanholsbeeck, F. Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Opt. Lett. 2006, 31, 3489–3491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser. Opt. Lett. 2005, 30, 2852–2854. [Google Scholar] [CrossRef]
- Yoshida, E.; Nakazawa, M. Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser. Opt. Lett. 1997, 22, 1409–1411. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.L.; Liu, H.; Cui, H.; Huang, Y.Q.; Ning, Q.Y.; Liu, M.; Luo, Z.C.; Luo, A.P.; Xu, W.C. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser. Opt. Express 2015, 23, 17720–17726. [Google Scholar] [CrossRef]
- Mao, D.; Liu, X.; Sun, Z.; Lu, H.; Han, D.; Wang, G.; Wang, F. Flexible high-repetition-rate ultrafast fiber laser. Sci. Rep. 2013, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Si Fodil, R.; Amrani, F.; Yang, C.; Kellou, A.; Grelu, P. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser. Phys. Rev. A 2016, 94, 013813. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Liu, D. Ultrahigh-repetition-rate bound-soliton fiber laser. Appl. Phys. B 2010, 99, 441–447. [Google Scholar] [CrossRef]
- Zadok, A.; Sendowski, J.; Yariv, A. Birefringence-Induced Trains of High-Rate Pulses in a Mode-Locked Fiber Laser. IEEE Photonics J. 2009, 1, 128–134. [Google Scholar] [CrossRef]
- Schröder, J.; Vo, T.D.; Eggleton, B.J. Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz. Opt. Lett. 2009, 34, 3902–3904. [Google Scholar] [CrossRef]
- Schröder, J.; Coen, S.; Sylvestre, T.; Eggleton, B.J. Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper. Opt. Express 2010, 18, 22715–22721. [Google Scholar] [CrossRef]
- Peccianti, M.; Pasquazi, A.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tang, R.; Luo, A.-P.; Xu, W.-C.; Luo, Z.-C. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers. Photonics Res. 2018, 6, C1–C7. [Google Scholar] [CrossRef]
- Tan, X.M.; Chen, H.J.; Cui, H.; Lv, Y.K.; Zhao, G.K.; Luo, Z.C.; Luo, A.P.; Xu, W.C. Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate. Opt. Express 2017, 25, 16291–16299. [Google Scholar] [CrossRef]
- Liu, S.; Yan, F.; Ting, F.; Zhang, L.; Bai, Z.; Han, W.; Zhou, H. Multi-Wavelength Thulium-Doped Fiber Laser Using a Fiber-Based Lyot Filter. IEEE Photonics Technol. Lett. 2016, 28, 864–867. [Google Scholar] [CrossRef]
- Luo, Z.C.; Luo, A.P.; Xu, W.C.; Yin, H.S.; Liu, J.R.; Ye, Q.; Fang, Z.J. Tunable Multiwavelength Passively Mode-Locked Fiber Ring Laser Using Intracavity Birefringence-Induced Comb Filter. IEEE Photonics J. 2010, 2, 571–577. [Google Scholar]
- Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 2005, 72, 043816. [Google Scholar] [CrossRef]
- Chen, C.-J.; Wai, P.K.A.; Menyuk, C.R. Soliton fiber ring laser. Opt. Lett. 1992, 17, 417–419. [Google Scholar] [CrossRef]
- Luo, J.L.; Li, L.; Ge, Y.Q.; Jin, X.X.; Tang, D.Y.; Shen, D.Y.; Zhang, S.M.; Zhao, L.M. L-Band Femtosecond Fiber Laser Mode Locked by Nonlinear Polarization Rotation. IEEE Photonics Technol. Lett. 2014, 26, 2438–2441. [Google Scholar] [CrossRef]
- Kwon, W.S.; Lee, H.; Kim, J.H.; Choi, J.; Kim, K.-S.; Kim, S. Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber. Opt. Express 2015, 23, 7779–7785. [Google Scholar] [CrossRef] [PubMed]
- Pasquazi, A.; Peccianti, M.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R. Highly Stable 200 GHz Soliton Microring Resonator Laser based on Filter-Driven Four Wave Mixing. In Proceedings of the CLEO: Applications and Technology, Baltimore, MD, USA, 1–6 May 2011; p. JWA10. [Google Scholar]
- Yılmaz, S.; Sayınc, H.; Ilday, F.Ö.; Neumann, J.; Kracht, D. Intracavity Dissipative Four-Wave Mixing at Different Dispersion Regimes of an Ultrafast Fiber Laser. In Proceedings of the Frontiers in Optics, Rochester, NY, USA, 17–21 October 2016; p. FTu1I.4. [Google Scholar]
- Bao, H.; Cooper, A.; Chu, S.T.; Moss, D.J.; Morandotti, R.; Little, B.E.; Peccianti, M.; Pasquazi, A. Type-II micro-comb generation in a filter-driven four wave mixing laser. Photon. Res. 2018, 6, B67–B73. [Google Scholar] [CrossRef]
- Riemensberger, J.; Lukashchuk, A.; Karpov, M.; Weng, W.L.; Lucas, E.; Liu, J.Q.; Kippenberg, T.J. Massively parallel coherent laser ranging using a soliton microcomb. Nature 2020, 70, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, L.; Johansson, A.C.; Valiev, D.; Khodabakhsh, A.; Tkacz, A.; Schmidt, F.M.; Foltynowicz, A. Detection of OH in an atmospheric flame at 1.5 um using optical frequency comb spectroscopy. Photonics Lett. Pol. 2016, 8, 110–112. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Luo, J.; Fu, H.; Bu, Y.; Chen, N. Temperature measurement using a multi-wavelength fiber ring laser based on a hybrid gain medium and Sagnac interferometer. Opt. Express 2020, 28, 39933–39943. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Huang, Q.; Jiang, J.; Huang, Z.; Mou, C. Wavelength-Tunable L-Band High Repetition Rate Erbium-Doped Fiber Laser Based on Dissipative Four-Wave Mixing. Sensors 2021, 21, 5975. https://doi.org/10.3390/s21175975
Li K, Huang Q, Jiang J, Huang Z, Mou C. Wavelength-Tunable L-Band High Repetition Rate Erbium-Doped Fiber Laser Based on Dissipative Four-Wave Mixing. Sensors. 2021; 21(17):5975. https://doi.org/10.3390/s21175975
Chicago/Turabian StyleLi, Kai, Qianqian Huang, Junjie Jiang, Zinan Huang, and Chengbo Mou. 2021. "Wavelength-Tunable L-Band High Repetition Rate Erbium-Doped Fiber Laser Based on Dissipative Four-Wave Mixing" Sensors 21, no. 17: 5975. https://doi.org/10.3390/s21175975
APA StyleLi, K., Huang, Q., Jiang, J., Huang, Z., & Mou, C. (2021). Wavelength-Tunable L-Band High Repetition Rate Erbium-Doped Fiber Laser Based on Dissipative Four-Wave Mixing. Sensors, 21(17), 5975. https://doi.org/10.3390/s21175975