Robust Inter-Vehicle Distance Measurement Using Cooperative Vehicle Localization
Abstract
:1. Introduction
2. Problem Formulation of Inter-Vehicle Distance Measurement
3. IVD Estimation Method
3.1. Absolute Position Differencing Distance
3.2. Pseudoranges Differencing Distance
3.3. Single Differencing Distance
3.4. Double Differencing Distance
4. Experimental Results and Discussion
4.1. Experiment Setup
4.2. Static Experiments
4.3. Dynamic Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, H.; Wan, L.; Dong, M.; Ota, K.; Wang, X. Assistant Vehicle Localization Based on Three Collaborative Base Stations via SBL-Based Robust DOA Estimation. IEEE Internet Things J. 2019, 6, 5766–5777. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Xiao, J.; Valde, R.; Wrenn, M.; Leflar, J. Collaborative Mapping and Autonomous Parking for Multi-Story Parking Garage. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1629–1639. [Google Scholar] [CrossRef]
- Zhuang, W.; Li, S.; Zhang, X.; Kum, D.; Song, Z.; Yin, G.; Ju, F. A survey of powertrain configuration studies on hybrid electric vehicles. Appl. Energy 2020, 262, 114553. [Google Scholar] [CrossRef]
- Alam, N.; Balaei, A.T.; Dempster, A.G. An Instantaneous Lane-Level Positioning Using DSRC Carrier Frequency Offset. Trans. Intell. Transp. Syst. 2012, 13, 1566–1575. [Google Scholar] [CrossRef]
- Rabiee, R.; Zhong, X.; Yan, Y.; Tay, W.P. LaIF: A Lane-Level Self-Positioning Scheme for Vehicles in GNSS-Denied Environments. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2944–2961. [Google Scholar] [CrossRef]
- He, X.; Zhang, X.; Tang, L.; Liu, W. Instantaneous Real-Time Kinematic Decimeter-Level Positioning with BeiDou Triple-Frequency Signals over Medium Baselines. Sensors (Basel) 2015, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ling, Y.; Cao, H.; Huang, Z. Cooperative vehicle localisation method based on the fusion of GPS, inter-vehicle distance, and bearing angle measurements. IET Intell. Transp. Syst. 2019, 13, 644–653. [Google Scholar] [CrossRef]
- Trevor, A.J.B.; Beall, C.; Holzer, S.J.J.; Rusu, R.B. Inertial Measurement Unit Progress Estimation. U.S. Patent 10,484,669[P], 19 November 2019. [Google Scholar]
- Zhao, X.; Ge, Y.; Ke, F.; Liu, C.; Li, F. Investigation of real-time kinematic multi-GNSS precise point positioning with the CNES products. Measurement 2020, 166, 108231. [Google Scholar] [CrossRef]
- Maaref, M.; Kassas, Z.M. Ground Vehicle Navigation in GNSS-Challenged Environments Using Signals of Opportunity and a Closed-Loop Map-Matching Approach. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2723–2738. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kim, J.; Shim, D.H. Precise Localization and Mapping in Indoor Parking Structures via Parameterized SLAM. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4415–4426. [Google Scholar] [CrossRef]
- Xu, L.; Zhuang, W.; Yin, G.; Bian, C. Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance. Transp. Res. Part. C Emerg. Technol. 2019, 107, 34–53. [Google Scholar] [CrossRef]
- Wang, X.; Sun, T.; Sun, C.; Wang, J. Distributed networked localization using neighboring distances only through a computational topology control approach. Int. J. Distrib. Sens. Netw. 2020, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.-M.; Qiu, Z.; Nguyen, T.H.; Cao, M.; Xie, L. Distance-Based Cooperative Relative Localization for Leader-Following Control of MAVs. IEEE Robot. Autom. Lett. 2019, 4, 3641–3648. [Google Scholar] [CrossRef]
- de Ponte Muller, F. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles. Sens. (Basel) 2017, 17, 271. [Google Scholar] [CrossRef] [Green Version]
- Lassoued, K.; Bonnifait, P.; Fantoni, I. Cooperative Localization with Reliable Confidence Domains Between Vehicles Sharing GNSS Pseudoranges Errors with No Base Station. Intell. Transp. Syst. Mag. 2017, 9, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cai, B.-G.; Wang, J. Cooperative Localization of Connected Vehicles: Integrating GNSS With DSRC Using a Robust Cubature Kalman Filter. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2111–2125. [Google Scholar] [CrossRef]
- Wu, H.; Mei, X.; Chen, X.; Li, J.; Wang, J.; Mohapatra, P. A novel cooperative localization algorithm using enhanced particle filter technique in maritime search and rescue wireless sensor network. ISA Trans. 2018, 78, 39–46. [Google Scholar] [CrossRef]
- Ansari, K. Cooperative Position Prediction: Beyond Vehicle-to-Vehicle Relative Positioning. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1121–1130. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R.; Montezuma, P. Distributed algorithm for target localization in wireless sensor networks using RSS and AoA measurements. Pervasive Mob. Comput. 2017, 37, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Coluccia, A.; Fascista, A. On the Hybrid TOA/RSS Range Estimation in Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2018, 17, 361–371. [Google Scholar] [CrossRef]
- De Angelis, G.; Moschitta, A.; Carbone, P. Positioning techniques in indoor environments based on stochastic modeling of UWB round-trip-time measurements. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2272–2281. [Google Scholar] [CrossRef]
- Yin, J.; Wan, Q.; Yang, S.; Ho, K.C. A Simple and Accurate TDOA-AOA Localization Method Using Two Stations. IEEE Signal. Process. Lett. 2016, 23, 144–148. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.; Wang, Y.; Wang, Z.; Yu, L. Three Passive TDOA-AOA Receivers Based Flying-UAV Positioning in Extreme Environments. IEEE Sens. J. 2020, 20, 9589–9595. [Google Scholar] [CrossRef]
- He, J.; So, H.C. A Hybrid TDOA-Fingerprinting-Based Localization System for LTE Network. IEEE Sens. J. 2020, 20, 13653–13665. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, F.; Liu, K.; Lim, H.B.; Frazzoli, E.; Rus, D. A GPS pseudorange based cooperative vehicular distance measurement technique. In Proceedings of the the 75th IEEE Vehicular Technology Conference (IEEE VTC’12-Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar]
- Richter, E.; Odst, M.; Schubert, R. Cooperative relative localization using vehicle-to-vehicle communications. In Proceedings of the International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009; pp. 126–131. [Google Scholar]
- Liu, K.; Lim, H.B.; Frazzoli, E.; Ji, H.; Lee, V.C.S. Improving Positioning Accuracy Using GPS Pseudorange Measurements for Cooperative Vehicular Localization. IEEE Trans. Veh. Technol. 2014, 63, 2544–2556. [Google Scholar] [CrossRef]
- Golestan, K.; Sattar, F.; Karray, F.; Kamel, M.; Seifzadeh, S. Localization in vehicular ad hoc networks using data fusion and V2V communication. Comput. Commun. 2015, 71, 61–72. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Tuba, M. A Linear Estimator for Network Localization Using Integrated RSS and AOA Measurements. IEEE Signal. Process. Lett. 2019, 26, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Naseri, H.; Koivunen, V. A Bayesian Algorithm for Distributed Network Localization Using Distance and Direction Data. IEEE Trans. Signal. Inf. Process. Over Netw. 2019, 5, 290–304. [Google Scholar] [CrossRef]
- Guo, K.; Li, X.; Xie, L. Ultra-wideband and Odometry-Based Cooperative Relative Localization with Application to Multi-UAV Formation Control. IEEE Trans. Cybern. 2020, 50, 2590–2603. [Google Scholar] [CrossRef]
- Tahir, M.; Afzal, S.S.; Chughtai, M.S.; Ali, K. On the Accuracy of Inter-Vehicular Range Measurements Using GNSS Observables in a Cooperative Framework. IEEE Trans. Intell. Transp. Syst. 2019, 20, 682–691. [Google Scholar] [CrossRef]
- Kaplan, E.D.; Christopher, J.H. Understanding GPS/GNSS: Principles and Applications; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
Notation | Description | Notation | Description |
---|---|---|---|
Vehicle distance vector | Cosine matrix | ||
Estimated IVD between th and th vehicle | Correlated errors | ||
Unit vector from vehicle to satellite | Uncorrelated errors | ||
Position of base station | Unusual error term | ||
Position of Vehicle | Maximum likelihood estimate | ||
Estimated position of vehicle for previous iteration | Time delay error between the receiver and satellite | ||
Estimated position of vehicles | Difference of time delay error | ||
Pseudorange difference between th and th vehicle | Pseudorange from vehicle to satelli | ||
Position increment | Pseudorange differences for the vehicle and base station | ||
Pseudorange difference between th and th vehicle for different satellites | True distance between vehicle and satellite |
Ture IVD | APD RMSE [m] | PD RMSE [m] | SD RMSE [m] | DD RMSE [m] |
---|---|---|---|---|
5 m | 3.93 | 1.98 | 2.52 | 0.85 |
10 m | 3.65 | 1.75 | 2.43 | 0.91 |
15 m | 2.53 | 1.68 | 2.39 | 0.98 |
25 m | 3.24 | 1.53 | 2.74 | 1.03 |
35 m | 3.43 | 1.64 | 1.02 | 0.42 |
50 m | 3.95 | 1.99 | 2.39 | 0.75 |
(a) Open-Sky Condition. | ||||
Ture IVD | APD RMSE [m] | PD RMSE [m] | SD RMSE [m] | DD RMSE [m] |
5 m | 3.14 | 0.98 | 2.52 | 0.85 |
10 m | 3.27 | 1.25 | 2.05 | 1.14 |
15 m | 3.53 | 1.68 | 2.39 | 1.25 |
(b) Roadside Tree Covering Condition. | ||||
Ture IVD | APD RMSE [m] | PD RMSE [m] | SD RMSE [m] | DD RMSE [m] |
5 m | 3.86 | 1.98 | 2.82 | 2.35 |
10 m | 5.65 | 2.29 | 4.01 | 3.05 |
15 m | 7.64 | 3.28 | 5.97 | 3.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Zhuang, W.; Yin, G.; Liu, S.; Liu, Y.; Dong, H. Robust Inter-Vehicle Distance Measurement Using Cooperative Vehicle Localization. Sensors 2021, 21, 2048. https://doi.org/10.3390/s21062048
Wang F, Zhuang W, Yin G, Liu S, Liu Y, Dong H. Robust Inter-Vehicle Distance Measurement Using Cooperative Vehicle Localization. Sensors. 2021; 21(6):2048. https://doi.org/10.3390/s21062048
Chicago/Turabian StyleWang, Faan, Weichao Zhuang, Guodong Yin, Shuaipeng Liu, Ying Liu, and Haoxuan Dong. 2021. "Robust Inter-Vehicle Distance Measurement Using Cooperative Vehicle Localization" Sensors 21, no. 6: 2048. https://doi.org/10.3390/s21062048