Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review
Abstract
:1. Introduction
2. Methods of Segmenting Liver Blood Vessels
- -
- Vessel enhancement approaches
- -
- Active contour methods
- -
- Tracking methods
- -
- Machine learning approaches
3. Segmentation Metrics
4. Publicly Available Evaluation Datasets
Name | Number of Images/Volumes |
---|---|
SLIVER07 [51] | 30 CT |
3D-1RCADb [53] | 22 CT |
(http://www.ircad.fr/research/3dircadb/) | |
(accessed on 5 May 2019) | |
MSD [55] | 443 CT |
(http://medicaldecathlon.com/) | |
(accessed on 20 December 2020) | |
CHAOS [56] | 50 CT and 59 MR |
(https://chaos.grand-challenge.org/Data/) | |
(accessed on 20 December 2020) | |
Vascular Synthesizer [54] | 120 (3D synthetic data) |
5. Active Contour Methods
5.1. Edge-Based Method
5.2. Level-Set Method
6. Tracking Methods
6.1. Model-Based
6.2. Minimum Cost Path
7. Machine Learning Methods
7.1. Unsupervised
7.2. Supervised
8. Challenges and Conclusions
- -
- -
- -
- -
- -
- -
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Tridimensional |
Accuracy | |
ACM | Active contour model |
AGC | Attention-guided concatenation |
ANN | Artificial neural network |
CIL | Cascade incremental learning |
CNN | Convolutional neural network |
CT | Computed tomography |
CTA | Computed tomography angiography |
Dice similarity coefficient | |
Distance error | |
Symmetric distance error | |
ELM | Extreme learning machine |
Classification error | |
FC | Fuzzy Connectedness |
FCM | Fully Convolutional neural network |
FMM | Fast Marching method |
FN | False negative |
FNR | False negative rate |
FP | False positive |
FPR | False positive rate |
HD | Hausdorff distance |
HV | Hepatic vein |
ITK | Insight Toolkit |
Jaccard similarity coefficient | |
M | Metric tensor for minimum cost path |
Minimum cost path | |
MR | Magnetic resonance |
MRF | Markov random fields |
NPV | Negative predictive value |
Positive predictive value | |
PV | Portal vein |
R | Reference |
RMSE | Root mean standard error |
RANSAC | Random sample consensus |
RMSD | Root mean square symmetric surface distance |
RR | Recognition rate |
S | Segmentation |
Sensitivity | |
Specificity | |
TP | True positive |
TN | True negative |
USG | Ultrasonography |
VOE | Volumetric overlap error |
References
- Ashtari, S.; Pourhoseingholi, M.A.; Sharifian, A.; Zali, M.R. Hepatocellular carcinoma in Asia: Prevention strategy and planning. World J. Hepatol. 2015, 7, 1708. [Google Scholar] [CrossRef]
- Lesage, D.; Angelini, E.D.; Bloch, I.; Funka-Lea, G. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 2009, 13, 819–845. [Google Scholar] [CrossRef]
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S.A. Blood vessel segmentation methodologies in retinal images–A survey. Comput. Methods Programs Biomed. 2012, 108, 407–433. [Google Scholar] [CrossRef]
- Moghbel, M.; Mashohor, S.; Mahmud, R.; Saripan, M.I.B. Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography. Artif. Intell. Rev. 2018, 50, 497–537. [Google Scholar] [CrossRef]
- Moccia, S.; De Momi, E.; El Hadji, S.; Mattos, L.S. Blood vessel segmentation algorithms—Review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 2018, 158, 71–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affane, A.; Lebre, M.A.; Mittal, U.; Vacavant, A. Literature Review of Deep Learning Models for Liver Vessels Reconstruction. In Proceedings of the 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France, 7–10 July 2020; pp. 1–6. [Google Scholar]
- Zeng, Y.Z.; Liao, S.H.; Tang, P.; Zhao, Y.Q.; Liao, M.; Chen, Y.; Liang, Y.X. Automatic liver vessel segmentation using 3D region growing and hybrid active contour model. Comput. Biol. Med. 2018, 97, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, M.; Lee, J.; Chung, J.W.; Shin, Y.G. Accurate liver vessel segmentation via active contour model with dense vessel candidates. Comput. Methods Programs Biomed. 2018, 166, 61–75. [Google Scholar] [CrossRef]
- Lu, S.; Huang, H.; Liang, P.; Chen, G.; Xiao, L. Hepatic vessel segmentation using variational level set combined with non-local robust statistics. Magn. Reson. Imaging 2017, 36, 180–186. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, X.; Wang, J.; Wang, Y.; Tamura, S. Accurate vessel segmentation with constrained B-snake. IEEE Trans. Image Process. 2015, 24, 2440–2455. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Deklerck, R.; Nyssen, E.; Markova, A.; de Mey, J.; Yang, X.; Sun, K. Vascular active contour for vessel tree segmentation. IEEE Trans. Biomed. Eng. 2010, 58, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xiao, R.; Zhang, T.; Chen, C.; Wang, J.; Wang, Z. A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion. Med. Biol. Eng. Comput. 2020, 58, 709–724. [Google Scholar] [CrossRef]
- Lebre, M.A.; Vacavant, A.; Grand-Brochier, M.; Rositi, H.; Abergel, A.; Chabrot, P.; Magnin, B. Automatic segmentation methods for liver and hepatic vessels from CT and MRI volumes, applied to the Couinaud scheme. Comput. Biol. Med. 2019, 110, 42–51. [Google Scholar] [CrossRef]
- Zeng, Y.Z.; Zhao, Y.Q.; Liao, S.H.; Liao, M.; Chen, Y.; Liu, X.Y. Liver vessel segmentation based on centerline constraint and intensity model. Biomed. Signal Process. Control. 2018, 45, 192–201. [Google Scholar] [CrossRef]
- Sangsefidi, N.; Foruzan, A.H.; Dolati, A. Balancing the data term of graph-cuts algorithm to improve segmentation of hepatic vascular structures. Comput. Biol. Med. 2018, 93, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Do Yang, J.; Hwang, H.P.; Yu, H.C.; Ahn, S.; Kim, B.W.; You, H. Segmentation of liver and vessels from CT images and classification of liver segments for preoperative liver surgical planning in living donor liver transplantation. Comput. Methods Programs Biomed. 2018, 158, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.Z.; Zhao, Y.Q.; Tang, P.; Liao, M.; Liang, Y.X.; Liao, S.H.; Zou, B.J. Liver vessel segmentation and identification based on oriented flux symmetry and graph cuts. Comput. Methods Programs Biomed. 2017, 150, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Chen, F.; Kong, D. Liver Venous Tree Separation via Twin-Line RANSAC and Murray’s Law. IEEE Trans. Med. Imaging 2017, 36, 1887–1900. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Liu, J.; Venkatesh, S.K.; Huang, S.; Zhou, J.; Tian, Q.; Nowinski, W.L. Segmentation of liver vasculature from contrast enhanced CT images using context-based voting. IEEE Trans. Biomed. Eng. 2010, 58, 2144–2153. [Google Scholar]
- Bauer, C.; Pock, T.; Sorantin, E.; Bischof, H.; Beichel, R. Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts. Med. Image Anal. 2010, 14, 172–184. [Google Scholar] [CrossRef]
- Alhonnoro, T.; Pollari, M.; Lilja, M.; Flanagan, R.; Kainz, B.; Muehl, J.; Mayrhauser, U.; Portugaller, H.; Stiegler, P.; Tscheliessnigg, K. Vessel segmentation for ablation treatment planning and simulation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Beijing, China, 20–24 September 2010; pp. 45–52. [Google Scholar]
- Esneault, S.; Lafon, C.; Dillenseger, J.L. Liver vessels segmentation using a hybrid geometrical moments/graph cuts method. IEEE Trans. Biomed. Eng. 2009, 57, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Kaftan, J.N.; Tek, H.; Aach, T. A two-stage approach for fully automatic segmentation of venous vascular structures in liver CT images. In Medical Imaging 2009: Image Processing; International Society for Optics and Photonics: Lake Buena Vista (Orlando Area), FL, USA, 2009; Volume 7259, p. 725911. [Google Scholar]
- Nazir, A.; Cheema, M.N.; Sheng, B.; Li, P.; Kim, J.; Lee, T.Y. Living Donor-Recipient Pair Matching for Liver Transplant via Ternary Tree Representation with Cascade Incremental Learning. IEEE Trans. Biomed. Eng. 2021. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wang, B.; Zhang, W.; Luo, C.; Xu, W.; Xu, Z.; Zhang, Y.; Shi, Q.; Zhang, L.; You, Z. An Attention-guided Deep Neural Network with Multi-scale Feature Fusion for Liver Vessel Segmentation. IEEE J. Biomed. Health Inf. 2020. [Google Scholar] [CrossRef] [PubMed]
- Thomson, B.R.; Smit, J.N.; Ivashchenko, O.V.; Kok, N.F.; Kuhlmann, K.F.; Ruers, T.J.; Fusaglia, M. MR-to-US Registration Using Multiclass Segmentation of Hepatic Vasculature with a Reduced 3D U-Net. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 275–284. [Google Scholar]
- Xu, M.; Wang, Y.; Chi, Y.; Hua, X. Training liver vessel segmentation deep neural networks on noisy labels from contrast ct imaging. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 4 April 2020; pp. 1552–1555. [Google Scholar]
- Keshwani, D.; Kitamura, Y.; Ihara, S.; Iizuka, S.; Simo-Serra, E. TopNet: Topology Preserving Metric Learning for Vessel Tree Reconstruction and Labelling. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 14–23. [Google Scholar]
- Kitrungrotsakul, T.; Han, X.H.; Iwamoto, Y.; Lin, L.; Foruzan, A.H.; Xiong, W.; Chen, Y.W. VesselNet: A deep convolutional neural network with multi pathways for robust hepatic vessel segmentation. Comput. Med. Imaging Graph. 2019, 75, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Sun, J.; Ding, H.; Wang, X.; Wang, G. Robust liver vessel extraction using 3D U-Net with variant dice loss function. Comput. Biol. Med. 2018, 101, 153–162. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Z.; Wu, W.; Lin, C.C.; Tsui, P.H.; Wu, S. An improved fuzzy connectedness method for automatic three-dimensional liver vessel segmentation in CT images. J. Healthc. Eng. 2018, 2018, 2376317. [Google Scholar] [CrossRef]
- Mishra, D.; Chaudhury, S.; Sarkar, M.; Manohar, S.; Soin, A.S. Segmentation of vascular regions in ultrasound images: A deep learning approach. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Goceri, E.; Shah, Z.K.; Gurcan, M.N. Vessel segmentation from abdominal magnetic resonance images: Adaptive and reconstructive approach. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2811. [Google Scholar] [CrossRef]
- Ibragimov, B.; Toesca, D.; Chang, D.; Koong, A.; Xing, L. Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning. Phys. Med. Biol. 2017, 62, 8943. [Google Scholar] [CrossRef]
- Zeng, Y.Z.; Zhao, Y.Q.; Liao, M.; Zou, B.J.; Wang, X.F.; Wang, W. Liver vessel segmentation based on extreme learning machine. Phys. Med. 2016, 32, 709–716. [Google Scholar] [CrossRef]
- Wang, L.; Schnurr, A.K.; Zidowitz, S.; Georgii, J.; Zhao, Y.; Razavi, M.; Schwier, M.; Hahn, H.K.; Hansen, C. Segmentation of hepatic artery in multi-phase liver CT using directional dilation and connectivity analysis. In Proceedings of the Medical Imaging 2016: Computer-Aided Diagnosis. International Society for Optics and Photonics, San Diego, CA, USA, 24 March 2016; Volume 9785, p. 97851P. [Google Scholar]
- Oliveira, D.A.; Feitosa, R.Q.; Correia, M.M. Segmentation of liver, its vessels and lesions from CT images for surgical planning. Biomed. Eng. Online 2011, 10, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Bruyninckx, P.; Loeckx, D.; Vandermeulen, D.; Suetens, P. Segmentation of liver portal veins by global optimization. In Proceedings of the Medical Imaging 2010: Computer-Aided Diagnosis; International Society for Optics and Photonics: San Diego, CA, USA, 2010; Volume 7624, p. 76241Z. [Google Scholar]
- Krig, S. Computer Vision Metrics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Luu, H.M.; Klink, C.; Moelker, A.; Niessen, W.; Van Walsum, T. Quantitative evaluation of noise reduction and vesselness filters for liver vessel segmentation on abdominal CTA images. Phys. Med. Biol. 2015, 60, 3905. [Google Scholar] [CrossRef]
- Lamy, J.; Merveille, O.; Kerautret, B.; Passat, N.; Vacavant, A. Vesselness Filters: A Survey with Benchmarks Applied to Liver Imaging. In Proceedings of the International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021. [Google Scholar]
- Metz, C.E. Basic principles of ROC analysis. In Seminars in Nuclear Medicine; Elsevier: Amsterdam, The Netherlands, 1978; Volume 8, pp. 283–298. [Google Scholar]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Heston, T.F. Standardizing predictive values in diagnostic imaging research. J. Magn. Reson. Imaging JMRI 2011, 33, 505. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.S.; Brundage, J.F.; Redfield, R.R.; Damato, J.J.; Schable, C.A.; Putman, P.; Visintine, R.; Kim, H.I. Measurement of the false positive rate in a screening program for human immunodeficiency virus infections. N. Engl. J. Med. 1988, 319, 961–964. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Chen, X.; Udupa, J.K.; Bagci, U.; Zhuge, Y.; Yao, J. Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans. Image Process. 2012, 21, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Brejl, M.; Sonka, M. Object localization and border detection criteria design in edge-based image segmentation: Automated learning from examples. IEEE Trans. Med. Imaging 2000, 19, 973–985. [Google Scholar]
- Gass, T.; Szekely, G.; Goksel, O. Simultaneous segmentation and multiresolution nonrigid atlas registration. IEEE Trans. Image Process. 2014, 23, 2931–2943. [Google Scholar] [CrossRef]
- Heimann, T.; Van Ginneken, B.; Styner, M.A.; Arzhaeva, Y.; Aurich, V.; Bauer, C.; Beck, A.; Becker, C.; Beichel, R.; Bekes, G.; et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 2009, 28, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, F. Grundzüge der Mengenlehre; B.G. Teubner: Leipzig, Germany, 1914. [Google Scholar]
- Soler, L.; Hostettler, A.; Agnus, V.; Charnoz, A.; Fasquel, J.; Moreau, J.; Osswald, A.; Bouhadjar, M.; Marescaux, J. 3D Image Reconstruction for Comparison of Algorithm Database: A Patient Specific Anatomical and Medical Image Database. 2010. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjYqNrnl6fvAhWMJaYKHfHaAAQQFjABegQIAxAD&url=https%3A%2F%2Ffanyv88.com%3A443%2Fhttp%2Fwww-sop.inria.fr%2Fgeometrica%2Fevents%2Fwam%2Fabstract-ircad.pdf&usg=AOvVaw2UIANsN3F7Gns6AJFhrDMu (accessed on 5 May 2019).
- Hamarneh, G.; Jassi, P. VascuSynth: Simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Comput. Med. Imaging Graph. 2010, 34, 605–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Kavur, A.E.; Gezer, N.S.; Barış, M.; Aslan, S.; Conze, P.H.; Groza, V.; Pham, D.D.; Chatterjee, S.; Ernst, P.; Özkan, S.; et al. CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 2020, 34, 605–616. [Google Scholar]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef]
- Pratondo, A.; Chui, C.K.; Ong, S.H. Robust edge-stop functions for edge-based active contour models in medical image segmentation. IEEE Signal Process. Lett. 2015, 23, 222–226. [Google Scholar] [CrossRef]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef] [Green Version]
- Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 1996, 93, 1591–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Matuszewski, B.J.; Shark, L.K.; Moore, C.J. Medical image segmentation using new hybrid level-set method. In Proceedings of the 2008 Fifth International Conference Biomedical Visualization: Information Visualization in Medical and Biomedical Informatics, London UK, 7–11 July 2008; pp. 71–76. [Google Scholar]
- Lee, E.; Schmidt, M.; Wright, J. Improved and simplified inapproximability for k-means. Inf. Process. Lett. 2017, 120, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Boykov, Y.Y.; Jolly, M.P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In Proceedings of the Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 105–112. [Google Scholar]
- Sato, Y.; Nakajima, S.; Atsumi, H.; Koller, T.; Gerig, G.; Yoshida, S.; Kikinis, R. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In CVRMed-MRCAS’97; Springer: Berlin/Heidelberg, Germany, 1997; pp. 213–222. [Google Scholar]
- Merveille, O.; Talbot, H.; Najman, L.; Passat, N. Curvilinear structure analysis by ranking the orientation responses of path operators. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 304–317. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, R.T.; Xue, X. Variable-conductance, level-set curvature for image denoising. In Proceedings of the 2001 International Conference on Image Processing (Cat. No. 01CH37205), Thessaloniki, Greece, 7–10 October 2001; Volume 3, pp. 142–145. [Google Scholar]
- Sethian, J.A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science; Cambridge University Press: Cambridge, UK, 1999; Volume 3. [Google Scholar]
- Ibanez, L.; Schroeder, W.; Ng, L.; Cates, J. The ITK Software Guide; Kitware Inc.: New York, NY, USA, 2003. [Google Scholar]
- Murray, C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 1926, 9, 835–841. [Google Scholar] [CrossRef]
- Cohen, L.D.; Kimmel, R. Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 1997, 24, 57–78. [Google Scholar] [CrossRef]
- Sethian, J.A. Fast marching methods. SIAM Rev. 1999, 41, 199–235. [Google Scholar] [CrossRef]
- Law, M.W.; Chung, A.C. Three dimensional curvilinear structure detection using optimally oriented flux. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2008; pp. 368–382. [Google Scholar]
- Law, M.W.; Chung, A.C. An oriented flux symmetry based active contour model for three dimensional vessel segmentation. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010; pp. 720–734. [Google Scholar]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 1998; pp. 130–137. [Google Scholar]
- Krissian, K.; Malandain, G.; Ayache, N.; Vaillant, R.; Trousset, Y. Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 2000, 80, 130–171. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Staring, M.; Shamonin, D.; Reiber, J.H.; Stolk, J.; Stoel, B.C. A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med. Image Anal. 2011, 15, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Jégou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 11–19. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Jerman, T.; Pernuš, F.; Likar, B.; Špiclin, Ž. Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans. Med. Imaging 2016, 35, 2107–2118. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 639–655. [Google Scholar]
- Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Delft, The Netherlands, 2009. [Google Scholar]
- Chen, D.; Ao, Y.; Liu, S. Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images. Symmetry 2020, 12, 1067. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.L. Attention2AngioGAN: Synthesizing Fluorescein Angiography from Retinal Fundus Images using Generative Adversarial Networks. arXiv 2020, arXiv:2007.09191. [Google Scholar]
- Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.L.; Sanders, K.M.; Baker, S.A. RV-GAN: Retinal Vessel Segmentation from Fundus Images using Multi-scale Generative Adversarial Networks. arXiv 2021, arXiv:2101.00535. [Google Scholar]
- Van Ginneken, B.; Kerkstra, S.; Meakin, J. Grand Challenges in Biomedical Image Analysis. 2018. Available online: http:grand-challenge.org (accessed on 20 October 2019).
- Ivanov, Y.; Peleshko, D.; Makoveychuk, O.; Izonin, I.; Malets, I.; Lotoshunska, N.; Batyuk, D. Adaptive moving object segmentation algorithms in cluttered environments. In Proceedings of the Experience of Designing and Application of CAD Systems in Microelectronics, Lviv, Ukraine, 24–27 February 2015; pp. 97–99. [Google Scholar]
- Yang, H.; Qu, S. Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition. IET Intell. Transp. Syst. 2017, 12, 75–85. [Google Scholar] [CrossRef]
- Mehta, D.; Sotnychenko, O.; Mueller, F.; Xu, W.; Elgharib, M.; Fua, P.; Seidel, H.P.; Rhodin, H.; Pons-Moll, G.; Theobalt, C. XNect: Real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. (TOG) 2020, 39, 82:1–82:17. [Google Scholar] [CrossRef]
- Xu, K.; Gábor Csapó, T.; Roussel, P.; Denby, B. A comparative study on the contour tracking algorithms in ultrasound tongue images with automatic re-initialization. J. Acoust. Soc. Am. 2016, 139, EL154–EL160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffari, M.H.; Lee, W.S. Encoder-decoder CNN models for automatic tracking of tongue contours in real-time ultrasound data. Methods 2020, 179, 26–36. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Imaging Technique | Segmentation Method |
---|---|---|---|
Zeng et al. [7] | 2018 | CTA | Active contour methods |
Chung et al. [8] | 2018 | CTA | (Section 5) |
Lu et al. [9] | 2017 | MR | |
Cheng et al. [10] | 2015 | CTA | |
Shang et al. [11] | 2010 | CTA | |
Guo et al. [12] | 2020 | CT | Tracking methods |
Lebre et al. [13] | 2019 | CT and MR | (Section 6) |
Zeng et al. [14] | 2018 | CTA | |
Sangsefidi et al. [15] | 2018 | CT | |
Yang et al. [16] | 2018 | CT | |
Zeng et al. [17] | 2017 | CTA | |
Yan et al. [18] | 2017 | CTA | |
Chi et al. [19] | 2010 | CT | |
Bauer et al. [20] | 2010 | CT | |
Alhonnoro et al. [21] | 2010 | CT | |
Esneault et al. [22] | 2009 | CT | |
Kaftan et al. [23] | 2009 | CT | |
Nazir et al. [24] | 2021 | CT and CTA | Machine learning methods |
Yan et al. [25] | 2020 | CT | (Section 7) |
Thomson et al. [26] | 2020 | USG | |
Xu et al. [27] | 2020 | CT | |
Keshwani et al. [28] | 2020 | CT | |
Kitrungrotsakul et al. [29] | 2019 | CT | |
Huang et al. [30] | 2018 | CT | |
Zhang et al. [31] | 2018 | CT | |
Mishra et al. [32] | 2018 | USG | |
Gocer et al. [33] | 2017 | MR | |
Ibragimov et al. [34] | 2017 | CT | |
Zeng et al. [35] | 2016 | CT | |
Wang et al. [36] | 2016 | CT | |
Oliveira et al. [37] | 2011 | CT | |
Bruyninckx et al. [38] | 2010 | CT |
Metrics | Standard Formula | Description |
---|---|---|
Sensitivity (Sens); recall; true positive rate (TPR) [42] | Proportion of positives that are correctly identified. | |
Accuracy (Ac) [43] | Proportion of detected true samples that are actually true. | |
Specificity (Spec) [42] | Proportion of negatives that are correctly identified. | |
Precision; positive predictive value (PPV) [44] | Proportion of positive results that are true positives. | |
Negative predictive value (NPV) [44] | Proportion of negative results that are true negatives. | |
False positive rate (FPR) [45] | Ratio of the number of negative samples wrongly categorized as positive () to the total number of actual negative samples. | |
False negative rate (FNR) [45] | Ratio of the number of positive samples wrongly categorized as negative () to the total number of actual positive samples. | |
Dice similarity coefficient (DSC) [46] | Similarity between two sample sets. | |
Jaccard similarity coefficient (JSC) [47] | Similarity between finite sample sets. | |
Volumetric overlap error (VOE) [48] | The indicates segmentation performance; if the is close to 0, this represents a perfect segmentation. | |
Distance error () [49] | Measure of the average distance calculated from all s points on S to the closest point on R. | |
Symmetric distance error () [50] | Measure of the average distance calculated from all s points on S to the closest point on R and vice versa. | |
Root mean standard error (RMSE) [49] | Measure of the average squared difference between the estimated values and the actual value. | |
Root mean squared symmetric surface distance (RMSD) [51] | The indicates the segmentation performance between two contours S and R; the lower the , the better the segmentation result. | |
Hausdorff distance (HD) [52] | Overlapping index, which measures the largest Euclidean distance between two contours S and R and vice versa, computed over all pixels of each curve. | |
Classification error () [18] | Proportion of the incorrectly classified vessel branches to all vessel branches . | |
Recognition rate (RR) [19] | Proportion of the correctly classified vessel branches to all vessel branches . |
Author | Testing Dataset | Synthetic Data Used | Metrics Results |
---|---|---|---|
Zeng et al. [7] | 12 CTA volumes | Yes | |
mm | |||
Chung et al. [8] | 50 CTA images | No | |
Lu et al. [9] | 5 MR volumes | No | |
Cheng et al. [10] | 3 CTA datasets | Yes | |
Shang et al. [11] | 20 CTA volumes | Yes |
Author | Testing Dataset | Synthetic Data Used | Metrics Results |
---|---|---|---|
Guo et al. [12] | 8 CT volumes (3D-IRCADb-01) | No | |
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
Lebre et al. [13] | 20 CT (3D-IRCADb-01) volumes | Yes | |
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
and 40 MR volumes from internal dataset | |||
Zeng et al. [14] | 6 CTA volumes | Yes | |
Sangsefidi et al. [15] | 50 CT volumes, including | Yes | |
20 CT (3D-IRCADb-01) volumes | |||
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
Yang et al. [16] | 10 CT datasets (SLIVER07 [51]) | No | |
Zeng et al. [17] | 6 CTA volumes | Yes | |
Yan et al. [18] | 6 CTA volumes | No | |
Chi et al. [19] | 10 CT scans | No | |
Bauer et al. [20] | 15 contrast enhanced CT | Yes | |
Alhonnoro et al. [21] | CT | No | |
Esneault et al. [22] | CT | No | |
Kaftan et al. [23] | 30 CT scans | No |
Author | Testing Dataset | Synthetic Data Used | Metrics Results |
---|---|---|---|
Goceri et al. [33] | 14 MR volumes | No | |
Oliveira et al. [37] | 15 CT datasets (SLIVER07 [51]) | No | |
Zeng et al. [35] | 6 CT volumes | No | |
Wang et al. [36] | 18 CT volumes | No | mm |
Bruyninckx et al. [38] | 5 CT images (3D-IRCADb-01) | No | |
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) |
Author | Testing Dataset | Synthetic Data Used | Metrics Results |
---|---|---|---|
Ibragimov et al. [34] | 72 CT images | No | mm |
Kitrungrotsakul et al. [29] | 1 CT volume (3D-IRCADb-01) | Yes | |
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
Keshwani et al. [28] | 20 CT volumes from internal dataset | Yes | |
and 20 CT (3D-IRCADb-01) volumes | |||
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
Zhang et al. [31] | 20 CT (3D-IRCADb-01) volumes | No | |
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
20 CT (SLIVER07) datasets [51] | |||
Huang et al. [30] | 10 CT volumes from internal dataset and | Yes | |
20 CT (SLIVER07) datasets [51] and | |||
10 CT (3D-IRCADb-01) volumes | |||
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
Thomson et al. [26] | 203 USG volumes | No | |
Mishra et al. [32] | 132 USG images | No | |
Yan et al. [25] | 10 CT volumes from internal dataset and | No | |
20 CT (3D-IRCADb-01) volumes | |||
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
Xu et al. [27] | 20 CT (3D-IRCADb-01) volumes | No | |
(http://www.ircad.fr/research/3dircadb/) | |||
(accessed on 5 May 2019) | |||
Nazir et al. [24] | 30 CTA internal datasets and | No | up to |
10 CT (SLIVER07) datasets [51] | up to |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciecholewski, M.; Kassjański, M. Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review. Sensors 2021, 21, 2027. https://doi.org/10.3390/s21062027
Ciecholewski M, Kassjański M. Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review. Sensors. 2021; 21(6):2027. https://doi.org/10.3390/s21062027
Chicago/Turabian StyleCiecholewski, Marcin, and Michał Kassjański. 2021. "Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review" Sensors 21, no. 6: 2027. https://doi.org/10.3390/s21062027