A Design of Adaptive Control and Communication Protocol for SWIPT System in 180 nm CMOS Process for Sensor Applications
Abstract
:1. Introduction
- A control and communication protocol for an ultra-low power SWIPT system for sensor application.
- Adaptive switching between the time-switching scheme and the power-splitting scheme based on the RF energy available in the ambient environment.
- Adaptive control of digital frequency at the SWIPT receiver based on the available harvesting energy.
- Centralized control of the SWIPT system which is controlled by the SWIPT transmitter.
- Adaptive data frame selection to improve the communication in a low ambient energy scenario.
2. Proposed SWIPT System Architecture
2.1. SWIPT Transmitter
2.2. SWIPT Receiver
3. Proposed Adaptive Control and Communication Protocol
- SWIPT transmitter sends and receives a low power frame.
- SWIPT transmitter sends a high power frame and receives a high power frame.
- SWIPT transmitter sends a high power frame and receives a low power frame.
3.1. Role of SWIPT Transmitter
3.2. Synchronization between SWIPT Transmitter and Receiver
3.3. Data Communication between the SWIPT Transmitter and SWIPT Receiver
3.4. Estimation of Received Power
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.E.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Zhang, C.; Ahn, W.; Zhang, Y.; Childers, B.R. Live code update for IoT devices in energy harvesting environments. In Proceedings of the 2016 5th Non-Volatile Memory Systems and Applications Symposium (NVMSA), Daegu, Korea, 17–19 August 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, Q.; Li, G.Y.; Chen, W.; Ng, D.W.K.; Schober, R. An Overview of Sustainable Green 5G Networks. IEEE Wirel. Commun. 2017, 24, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Niyato, D.; Hossain, E.; Rashid, M.M.; Bhargava, V.K. Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management. IEEE Wirel. Commun. 2007, 14, 90–96. [Google Scholar] [CrossRef]
- Weldon, M.K. The Future X Network: A Bell Labs Perspective; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hou, L.; Tan, S. A preliminary study of thermal energy harvesting for industrial wireless sensor networks. In Proceedings of the 2016 10th International Conference on Sensing Technology (ICST), Nanjing, China, 11–13 November 2016; pp. 1–5. [Google Scholar]
- Krikidis, I.; Timotheou, S.; Nikolaou, S.; Zheng, G.; Ng, D.W.K.; Schober, R. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 2014, 52, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 2015, 53, 117–125. [Google Scholar] [CrossRef] [Green Version]
- World Energy Outlook. Available online: https://www.iea.org/publications/freepublications/publication/WEO2014.pdf (accessed on 13 November 2014).
- Mao, Y.; Zhang, J.; Letaief, K.B. A Lyapunov optimization approach for green cellular networks with hybrid energy supplies. IEEE J. Sel. Areas Commun. 2015, 33, 2463–2477. [Google Scholar] [CrossRef] [Green Version]
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. [Google Scholar] [CrossRef]
- Varshney, L.R. Transporting information and energy simultaneously. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1612–1616. [Google Scholar]
- Yoon, I.-J. Wireless power transfer in the radiating near-field region. In Proceedings of the 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Vancouver, BC, Canada, 19–24 July 2015; p. 344. [Google Scholar]
- Perera, T.D.P.; Jayakod, D.N.K.; Chatzinotas, S.; Sharma, V. Wireless information and power transfer: Issues, advances, and challenges. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–7. [Google Scholar]
- Zhao, N.; Zhang, S.; Yu, F.R.; Chen, Y.; Nallanathan, A.; Leung, V.C.M. Exploiting interference for energy harvesting: A survey, research issues, and challenges. IEEE Access 2017, 5, 10403–10421. [Google Scholar] [CrossRef]
- Ghosh, S.; Acharya, T.; Maity, S.P. Outage analysis in two-way communication with RF energy harvesting relay and co-channel interference. Trans. Emerg. Telecommun. Technol. 2017, 28, e3233. [Google Scholar] [CrossRef] [Green Version]
- Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. Energy Harvesting Wireless Communications: A Review of Recent Advances. IEEE J. Sel. Areas Commun. 2015, 33, 360–381. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, H.; Lee, K.; Lee, W.S.; Raha, A.; Kim, Y.; Raghunathan, V. Powering the Internet of Things. In Proceedings of the 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), La Jolla, CA, USA, 11–13 August 2014; Volume 14, pp. 375–380. [Google Scholar]
- Huang, K.; Zhou, X. Cutting the last wires for mobile communications by microwave power transfer. IEEE Commun. Mag. 2015, 53, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks With RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2014, 17, 757–789. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, P.; Jamalipour, A. Toward the Evolution of Wireless Powered Communication Networks for the Future Internet of Things. IEEE Netw. 2017, 31, 62–69. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Yu, H.; Shi, L.; Qian, Y.; Shu, F.; Li, J.; Zhao, Y.; Jayakody, D.N.K. A cooperative modulation recognition: New paradigm for power line networks in smart grid. Phys. Commun. 2017, 25, 268–276. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, R.; Cheng, X.; Yang, L. Relay selection in power splitting based energy-harvesting half-duplex relay networks. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4 June 2017; pp. 1–5. [Google Scholar]
- Ding, Z.; Zhong, C.; Ng, D.W.K.; Peng, M.; Suraweera, H.A.; Schober, R.; Poor, H.V. Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun. Mag. 2015, 53, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.-W. Energy adaptive MAC protocol for wireless sensor networks with RF energy transfer. In Proceedings of the 2011 Third International Conference on Ubiquitous and Future Networks (ICUFN), Dalian, China, 15–17 June 2011; pp. 89–94. [Google Scholar]
- Fafoutis, X.; Dragoni, N. ODMAC: An on-demand MAC protocol for energy harvesting-wireless sensor networks. In Proceedings of the 8th ACM Symposium on Performance Evaluation of Wireless ad hoc, Sensor, and Ubiquitous Networks, PE-WASUN 2011, Miami Beach, FL, USA, 31 October–4 November 2011; pp. 49–56. [Google Scholar]
- Nguyen, K.; Nguyen, V.H.; Le, D.D.; Ji, Y.; Duong, D.A.; Yamada, S. ERI-MAC: An energy-harvested receiver-initiated MAC protocol for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2014, 10, 514169. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Yu, R.; Xiang, Y.; Xie, S. An efficient MAC protocol with adaptive energy harvesting for ma-chine-to-machine networks. IEEE Access 2015, 3, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Naderi, M.Y.; Nintanavongsa, P.; Chowdhury, K.R. RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Trans. Wireless Commun. 2014, 13, 3926–3937. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R.; Chua, K.-C. Wireless Information Transfer with Opportunistic Energy Harvesting. IEEE Trans. Wirel. Commun. 2013, 12, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Ha, T.; Kim, J.; Chung, J.-M. HE-MAC: Harvest-Then-Transmit Based Modified EDCF MAC Protocol for Wireless Powered Sensor Networks. IEEE Trans. Wirel. Commun. 2017, 17, 3–16. [Google Scholar] [CrossRef]
- Choi, K.W.; Rosyady, P.A.; Ginting, L.; Aziz, A.A.; Setiawan, D.; Kim, D.I. Theory and Experiment for Wireless-Powered Sensor Networks: How to Keep Sensors Alive. IEEE Trans. Wirel. Commun. 2018, 17, 430–444. [Google Scholar] [CrossRef]
- Abbasizadeh, H.; Kim, S.-Y.; Rikan, B.S.; Hejazi, A.; Khan, D.; Pu, Y.; Hwang, K.C.; Yang, Y.; Kim, D.I.; Lee, K.-Y. Design of a 900 MHz Dual-Mode SWIPT for Low-Power IoT Devices. Sensors 2019, 19, 4676. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Pu, L.; Wang, G.; Zhao, Y. RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues. Sensors 2019, 19, 3010. [Google Scholar] [CrossRef] [Green Version]
- Din, A.U.; Lee, J.; Hieu, N.X.; Lee, J. Dual-Mode RFID Tag IC Supporting Gen-2 and Visible RFID Modes Using a Pro-cess-Compensating Self-Calibrating Clock Generator. IEEE Trans. Ind. Electron. 2020, 67, 569–580. [Google Scholar] [CrossRef]
- Duong, V.; Hieu, N.X.; Lee, H.; Lee, J. A Battery-Assisted Passive EPC Gen-2 RFID Sensor Tag IC with Efficient Battery Power Management and RF Energy Harvesting. IEEE Trans. Ind. Electron. 2016, 63, 7112–7123. [Google Scholar] [CrossRef]
- Radiom, S.; Baghaei-Nejad, M.; Aghdam, K.; Vandenbosch, G.A.E.; Zheng, L.; Gielen, G.G.E. Far-Field On-Chip Antennas Monolithically Integrated in a Wireless-Powered 5.8-GHz Downlink/UWB Uplink RFID Tag in 0.18-µm Standard CMOS. IEEE J. Solid State Circuits 2010, 45, 1746–1758. [Google Scholar] [CrossRef]
- Feng, Y.; Wen, M.; Ji, F.; Leung, V.C.M. Performance Analysis for BDPSK Modulated SWIPT Cooperative Systems With Nonlinear Energy Harvesting Model. IEEE Access 2018, 6, 42373–42383. [Google Scholar] [CrossRef]
- He, S.; Xie, K.; Chen, W.; Zhang, D.; Wen, J. Energy-Aware Routing for SWIPT in Multi-Hop Energy-Constrained Wireless Network. IEEE Access 2018, 6, 17996–18008. [Google Scholar] [CrossRef]
- Hossain, M.A.; Md Noor, R.; Yau, K.A.; Ahmedy, I.; Anjum, S.S. A Survey on Simultaneous Wireless Information and Power Transfer with Cooperative Relay and Future Challenges. IEEE Access 2019, 7, 19166–19198. [Google Scholar] [CrossRef]
Sensor 2019 [36] | This Work | |
---|---|---|
Technology (µm) | PCB | 0.18 |
Architecture | SWIPT | SWIPT |
Harvest source | Ambient RF | Ambient RF |
Power (µW) | NA | 12.3@ 2 MHz |
Area (mm2) | NA | 0.067 |
Clock frequency (MHz) | NA | 0.032–2 |
Data rate (kbps) | 1000–4000 | 8–500 |
RF frequency (GHz) | 0.900 | 5.8 |
Protocol | NA | ACCP |
Downlink modulation | ASK/BPSK/PAPR | ASK |
Uplink modulation | Backscattering | Backscattering |
TIE 2020 [38] | TIE 2016 [39] | JSSC 2010 [40] | This Work | |
---|---|---|---|---|
Technology (µm) | 0.18 | 0.18 | 0.18 | 0.18 |
Architecture | RFID | RFID | RFID | SWIPT |
Harvest source | RF/VL | RF/Battery | RF | Ambient RF |
Power (µW) | 64 | 66.3 | 16.6 | 12.3@ 500 kbps |
Area (mm2) | 2.4 | 1.1 | 4.5 | 0.81 |
Clock frequency (MHz) | 1.92 | 0.032 | 10 | 0.032–2 |
Data rate (kbps) | 40 | NA | 1000 | 8–500 |
RF frequency (GHz) | 0.902–0.928 | 0.860–0.930 | 5.8 | 5.8 |
Downlink modulation | ASK | ASK | ASK | ASK |
Uplink modulation | Backscattering | Backscattering | Impulse OOK, BPSK | Backscattering |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.R.U.; Ali, I.; Khan, D.; Asif, M.; Kumar, P.; Oh, S.J.; Pu, Y.G.; Yoo, S.-S.; Hwang, K.C.; Yang, Y.; et al. A Design of Adaptive Control and Communication Protocol for SWIPT System in 180 nm CMOS Process for Sensor Applications. Sensors 2021, 21, 848. https://doi.org/10.3390/s21030848
Rehman MRU, Ali I, Khan D, Asif M, Kumar P, Oh SJ, Pu YG, Yoo S-S, Hwang KC, Yang Y, et al. A Design of Adaptive Control and Communication Protocol for SWIPT System in 180 nm CMOS Process for Sensor Applications. Sensors. 2021; 21(3):848. https://doi.org/10.3390/s21030848
Chicago/Turabian StyleRehman, Muhammad Riaz Ur, Imran Ali, Danial Khan, Muhammad Asif, Pervesh Kumar, Seong Jin Oh, Young Gun Pu, Sang-Sun Yoo, Keum Cheol Hwang, Youngoo Yang, and et al. 2021. "A Design of Adaptive Control and Communication Protocol for SWIPT System in 180 nm CMOS Process for Sensor Applications" Sensors 21, no. 3: 848. https://doi.org/10.3390/s21030848
APA StyleRehman, M. R. U., Ali, I., Khan, D., Asif, M., Kumar, P., Oh, S. J., Pu, Y. G., Yoo, S.-S., Hwang, K. C., Yang, Y., Kim, D. I., & Lee, K.-Y. (2021). A Design of Adaptive Control and Communication Protocol for SWIPT System in 180 nm CMOS Process for Sensor Applications. Sensors, 21(3), 848. https://doi.org/10.3390/s21030848