Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears
Abstract
:1. Introduction
1.1. Background
1.2. Related Work, Motivation and Contributions
- (a)
- auditory cue analysis of ears that were 3D-printed out of cheap off-the-shelf materials, which remains underexplored; and,
- (b)
- a computationally less taxing binaural localization strategy with and improved disambiguation mechanism (via the induced secondary cues)
2. Sound Ambiguity
3. Materials, Methods and Analysis
3.1. Interaural Time Difference (ITD)
3.2. Direct and Reverberant Energy Fields
3.3. Ambiguity Elimination and Distance Estimation
3.4. Spectral Cues (SC)
3.5. Binaural Localization Strategy
Algorithm 1 Binaural Localization via Spatial Auditory Cues |
Require: SPL, , SC |
Ensure: and ▹ Estimated coordinates |
|
4. Experiments and Performance Evaluations
5. Discussion
6. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notations and Acronyms
Notations/ Acronyms | Descriptions |
PLA | Polylactic Acid |
HATS | Head and Torso Simulator |
HRTF | Head Related Transfer Function |
DRR | direct-to-reverberant ratio |
SPL, ILD, ITD | sound pressure level, interaural level difference, interaural time difference |
AoA | Angle of Arrival |
Sampling rate | |
Mic L, Mic R | Left microphone, right microphone |
RT | reverberation time |
the estimated time for the combined direct and reverberant energy decay curve to drop by 60 dB | |
SC | spectral cues |
ADC | analog to digital converter |
DUT | device under test |
FFT | Fast Fourier Transform |
dB, dBFS | decibels/decibels relative to full scale |
,,d | actual azimuth angle, elevation angle, Euclidean distance of the sound source from the DUT |
,, | estimated azimuth angle, elevation angle, Euclidean distance of the sound source from the DUT |
notation for AoA | |
Estimated azimuth angle before correction | |
induced secondary cues (as described in Algorithm 1) | |
estimated coordinates of the sound source in the 3D space | |
notation for ITD | |
, | estimated distance based on SPL regression curve when the sound source is in the front/back of the receiver |
estimated distance based on | |
notation for (in milliseconds) | |
, | sets of elevation angle defined in Equation (7) |
weighting parameter for the estimated distance | |
e | deviation of the estimated from the actual values (for and d) |
, | Cumulative error, Average of absolute error |
fields of real numbers | |
, | fields of positive real numbers, fields of negative real numbers |
Appendix A
k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
d | 6 | 6 | 8 | 10 | 10 | 12 | 16 | 19 | 6 | 6 | 8 | 10 | 10 | 12 | 16 | 19 |
0 | 0 | 15 | 30 | 30 | 45 | 80 | 80 | 110 | 110 | 135 | 180 | 180 | 180 | 260 | 260 | |
0 | 45 | 90 | 270 | 135 | 0 | 0 | 270 | 0 | 45 | 90 | 270 | 135 | 0 | 0 | 270 |
d = 6 | d = 13 | d = 19 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
SPL () | 0.14 | 4.41 | 0.46 | 4.92 | 1.04 | 6.47 | 3.6 | 4.69 | 4.74 | 5.78 | 2.34 | 1.18 | 0.97 | 4.65 | 3.8 | 4.24 | 8.74 | 7.75 | 18.1 | 6.71 | 0.79 | 2.8 | 4.73 | 9.91 | 9.89 | 0.36 | 2.06 | 1.46 | 7.87 | 6.2 |
SPL () | 1.42 | 1.46 | 1.03 | 1.77 | 0.66 | 2.73 | 0.96 | 1.64 | 1.67 | 2.31 | 5.39 | 4.67 | 4.54 | 1.12 | 1.63 | 1.36 | 1.34 | 0.75 | 6.92 | 0.12 | 5.82 | 4.62 | 3.47 | 0.4 | 0.41 | 6.09 | 5.06 | 5.42 | 1.6 | 2.59 |
0.3 | 0.27 | 0.31 | 0.38 | 0.47 | 0.23 | 0.06 | 0.53 | 0.14 | 0.15 | 1.45 | 0.91 | 1.31 | 0.72 | 1.5 | 0.8 | 1.62 | 1.27 | 0.54 | 0.57 | 0.14 | 0.81 | 0.87 | 0.92 | 0.78 | 0.04 | 0.6 | 0.73 | 0.08 | 0.01 | |
Algorithm 1 | 0.25 | 0.27 | 0.31 | 0.38 | 0.67 | 0.23 | 0.06 | 0.53 | 0.14 | 0.15 | 0.03 | 0.12 | 0.45 | 0.72 | 2.32 | 0.8 | 1.62 | 1.27 | 0.54 | 0.57 | 0.17 | 0.49 | 0.87 | 0.92 | 0.78 | 0.08 | 0.35 | 0.05 | 0.08 | 0.01 |
k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Actual azimuth | 0 | 90 | 225 | 270 | 0 | 45 | 0 | 0 | 225 | 0 | |
Estimated azimuth | 9.65 | 85.4 | 48.8 | 276 | 9.21 | 36.3 | 173.4 | 9.16 | 212.5 | 5.35 | |
(Alg. 1) | 9.65 | 85.4 | 131.2 | 264 | 9.21 | 143.7 | 6.31 | 9.16 | 212.5 | 5.35 | |
Estimated elevation | 6.2 | 9.6 | 7.7 | 8.22 | 31.2 | 34.8 | 86.9 | 172 | 166 | 260 | |
Secondary cues | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
AP | Without Alg. 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
With Alg. 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
Actual azimuth | 0 | 45 | 90 | 135 | 270 | 135 | 0 | 0 | 0 | 270 | |
Estimated azimuth | 1.54 | 42.2 | 87.7 | 49.1 | 268 | 53.9 | 174.3 | 7.66 | 5.69 | 246 | |
(Alg. 1) | 1.54 | 42.2 | 87.7 | 131 | 268 | 126 | 5.69 | 7.66 | 5.69 | 246 | |
Estimated elevation | 5.81 | 10.2 | 11.1 | 9.25 | 8.22 | 21.6 | 85.7 | 151 | 256 | 156 | |
Secondary cues | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
AP | Without Alg. 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
With Alg. 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Actual azimuth | 0 | 45 | 90 | 225 | 270 | 315 | 45 | 0 | 0 | 0 | |
Estimated azimuth | 5.42 | 49.6 | 96.7 | 309 | 255 | 305 | 42.32 | 1.35 | 3.22 | 2.32 | |
(Alg. 1) | 5.42 | 49.6 | 83.3 | 231 | 285 | 305 | 42.32 | 1.35 | 3.22 | 2.32 | |
Estimated elevation | 9.25 | 5.32 | 7.93 | 8.39 | 14.1 | 7.7 | 36.32 | 71.3 | 190 | 262 | |
Secondary cues | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | ||
1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | ||
AP | Without Alg. 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
With Alg. 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
References
- Argentieri, S.; Danès, P.; Souères, P. A survey on sound source localization in robotics: From binaural to array processing methods. Comput. Speech Lang. 2015, 34, 87–112. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Sun, L.; Yost, W. Active Binaural Localization of Multiple Sound Sources. Robot. Auton. Syst. 2016, 85, 83–92. [Google Scholar] [CrossRef]
- Kumpik, D.P.; Campbell, C.; Schnupp, J.W.H.; King, A.J. Re-weighting of Sound Localization Cues by Audiovisual Training. Front. Neurosci. 2019, 13, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Hartmann, W. On the ability of human listeners to distinguish between front and back. Hear. Res. 2009, 260, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Paul, S. Binaural Recording Technology: A Historical Review and Possible Future Developments. Acta Acust. United Acust. 2009, 95, 767–788. [Google Scholar] [CrossRef]
- Zhang, W.; Samarasinghe, P.N.; Chen, H.; Abhayapala, T.D. Surround by Sound: A Review of Spatial Audio Recording and Reproduction. Appl. Sci. 2017, 7, 532. [Google Scholar] [CrossRef]
- Yang, Y.; Chu, Z.; Shen, L.; Xu, Z. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays. J. Sound Vib. 2016, 373, 340–359. [Google Scholar] [CrossRef]
- Fischer, B.J.; Seidl, A.H. Resolution of interaural time differences in the avian sound localization circuit—A modeling study. Front. Comput. Neurosci. 2014, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Du, R.; Liu, J.; Zhou, D.; Meng, G. Adaptive Kalman filter enhanced with spectrum analysis to estimate guidance law parameters with unknown prior statistics. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 3078–3099. [Google Scholar] [CrossRef]
- Dorman, M.; Loiselle, L.; Stohl, J.; Yost, W.; Spahr, T.; Brown, C.; Natale, S. Interaural Level Differences and Sound Source Localization for Bilateral Cochlear Implant Patients. Ear Hear. 2014, 35, 633. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Weber, J. Real World Assessment of Auditory Localization Using Hearing Aids. Available online: https://www.audiologyonline.com/articles/real-world-assessment-of-auditory-localization-~using-hearing-aids-11719 (accessed on 30 May 2020).
- Spagnol, S. On distance dependence of pinna spectral patterns in head-related transfer functions. J. Acoust. Soc. Am. 2015, 137, EL58–EL64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahveninen, J.; Kopco, N.; Jääskeläinen, I. Psychophysics and Neuronal Bases of Sound Localization in Humans. Hear. Res. 2013, 307, 86–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risoud, M.; Jean Noel, H.; Gauvrit, F.; Renard, C.; Bonne, N.X.; Vincent, C. Azimuthal sound source localization of various sound stimuli under different conditions. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2019, 137, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.L.; Xie, B.S. Head-Related Transfer Functions and Virtual Auditory Display. Soundscape Semiot. Localization Categ. 2014. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Nakadai, K.; Okuno, H. Improved sound source localization in horizontal plane for binaural robot audition. Appl. Intell. 2014, 42, 63–74. [Google Scholar] [CrossRef]
- Georganti, E.; Mourjopoulos, J. Statistical relationships of Room Transfer Functions and Signals. In Proceedings of the Forum Acusticum, Aalborg, Denmark, 27 June–1 July 2011. [Google Scholar]
- Lovedee-Turner, M.; Murphy, D. Application of Machine Learning for the Spatial Analysis of Binaural Room Impulse Responses. Appl. Sci. 2018, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Ke, Y.; Cheng, L.; Zheng, C.; Li, X. Joint estimation of binaural distance and azimuth by exploiting deep neural networks. J. Acoust. Soc. Am. 2020, 147, 2625–2635. [Google Scholar] [CrossRef]
- Pang, C.; Liu, H.; Zhang, J.; Li, X. Binaural Sound Localization Based on Reverberation Weighting and Generalized Parametric Mapping. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1618–1632. [Google Scholar] [CrossRef] [Green Version]
- Larsen, E.; Iyer, N.; Lansing, C.; Feng, A. On the minimum audible difference in direct-to-reverberant energy ratio. J. Acoust. Soc. Am. 2008, 124, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Garas, J.; Sommen, P. Improving virtual sound source robustness using multiresolution spectral analysis and synthesis. In Proceedings of the Audio Engineering Society Convention 105, San Francisco, CA, USA, 26–29 September 1998. [Google Scholar]
- Iida, K. Head-Related Transfer Function and Acoustic Virtual Reality; Springer: Singapore, 2019. [Google Scholar]
- Fingerhuth, S.; Bravo, J.L.; Bustamante, M.; Pizarro, F. Experimental Study of the Transfer Function of Replicas of Pinnae of Individuals Manufactured with Alginate. IEEE Lat. Am. Trans. 2020, 18, 16–23. [Google Scholar] [CrossRef]
- Rodemann, T.; Ince, G.; Joublin, F.; Goerick, C. Using binaural and spectral cues for azimuth and elevation localization. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2185–2190. [Google Scholar]
- Heffner, R.; Koay, G.; Heffner, H. Use of binaural cues for sound localization in large and small non-echolocating bats: Eidolon helvum and Cynopterus brachyotis. J. Acoust. Soc. Am. 2010, 127, 3837–3845. [Google Scholar] [CrossRef] [PubMed]
- Schillebeeckx, F.; Mey, F.D.; Vanderelst, D.; Peremans, H. Biomimetic Sonar: Binaural 3D Localization using Artificial Bat Pinnae. Int. J. Robot. Res. 2011, 30, 975–987. [Google Scholar] [CrossRef]
- Odo, W.; Kimoto, D.; Kumon, M.; Furukawa, T. Active Sound Source Localization by Pinnae with Recursive Bayesian Estimation. J. Robot. Mechatron. 2017, 29, 49–58. [Google Scholar] [CrossRef]
- Grothe, B.; Pecka, M. The natural history of sound localization in mammals—A story of neuronal inhibition. Front. Neural Circuits 2014, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Heffner, H.; Heffner, R. The evolution of mammalian hearing. AIP Conf. Proc. 2018, 1965, 130001. [Google Scholar]
- Kulaib, A.; Al-Mualla, M.; Vernon, D. 2D Binaural Sound Localization: For Urban Search and Rescue Robotics. Mob. Robot. Solut. Chall. 2009, 423–445. [Google Scholar] [CrossRef] [Green Version]
- Rascon, C.; Meza, I. Localization of sound sources in robotics: A review. Robot. Auton. Syst. 2017, 96, 184–210. [Google Scholar] [CrossRef]
- Kerzel, M.; Strahl, E.; Magg, S.; Navarro-Guerrero, N.; Heinrich, S.; Wermter, S. NICO—Neuro-Inspired COmpanion: A Developmental Humanoid Robot Platform for Multimodal Interaction. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28–31 August 2017. [Google Scholar]
- Deshpande, N.; Braasch, J. Detection of early reflections from a binaural activity map using neural networks. J. Acoust. Soc. Am. 2019, 146, 2529–2539. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.L.; Rahardja, S. An Unsupervised Deep Learning System for Acoustic Scene Analysis. Appl. Sci. 2020, 10, 2076. [Google Scholar] [CrossRef] [Green Version]
- Argentieri, S.; Portello, A.; Bernard, M.; Danès, P.; Gas, B. Binaural Systems in Robotics. In The Technology of Binaural Listening; Blauert, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 225–253. [Google Scholar]
- Ma, N.; Gonzalez, J.; Brown, G. Robust Binaural Localization of a Target Sound Source by Combining Spectral Source Models and Deep Neural Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1. [Google Scholar] [CrossRef]
- Scharine, A.; Letowski, T.; Sampson, J. Auditory situation awareness in urban operations. J. Mil. Strateg. Stud. 2009, 11, 1–24. [Google Scholar]
- Sebastian Mannoor, M.; Jiang, Z.; James, T.; Kong, Y.; Malatesta, K.; Soboyejo, W.; Verma, N.; Gracias, D.; McAlpine, M. 3D Printed Bionic Ears. Nano Lett. 2013, 13, 2634–2639. [Google Scholar] [CrossRef] [Green Version]
- Gala, D.; Lindsay, N.; Sun, L. Realtime Active Sound Source Localization for Unmanned Ground Robots Using a Self-Rotational Bi-Microphone Array. J. Intell. Robot. Syst. 2019, 95, 935–954. [Google Scholar] [CrossRef] [Green Version]
- Magassouba, A.; Bertin, N.; Chaumette, F. Aural Servo: Sensor-Based Control From Robot Audition. IEEE Trans. Robot. 2018, 34, 572–585. [Google Scholar] [CrossRef]
- Zohourian, M.; Martin, R. Binaural Direct-to-Reverberant Energy Ratio and Speaker Distance Estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 92–104. [Google Scholar] [CrossRef]
- Lu, Y.C.; Cooke, M. Binaural distance perception based on direct-to-reverberant energy ratio. In Proceedings of the International Workshop on Acoustic Echo and Noise Control, Washington, DC, USA, 14–17 September 2008. [Google Scholar]
- Thomas, P.; Van Renterghem, T.; De Boeck, E.; Dragonetti, L.; Botteldooren, D. Reverberation-based urban street sound level prediction. J. Acoust. Soc. Am. 2013, 133, 3929–3939. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.S.; Kang, J.; Kim, M.J. An experimental study on the acoustic characteristics of outdoor spaces surrounded by multi-residential buildings. Appl. Acoust. 2017, 127, 147–159. [Google Scholar] [CrossRef]
Parameter | Descriptions |
---|---|
Slicer | Cura 15.04.6 |
Material | PLA |
Layer height | 0.15 mm |
Shell thickness | 0.8 mm |
Enable extraction | Yes |
Bottom Thickness | 0.6 mm |
Fill density | 100% |
Print speed | 60 mm/s |
Nozzle Temperature | 210 C |
Nozzle size | 0.4 mm |
Layer thickness | 0.1 mm |
Extrusion overlap | 0.15 mm |
Travel speed | 100 mm/s |
Bottom layer speed | 20 mm/s |
Outer shell speed | 50 mm/s |
Inner shell speed | 60 mm/s |
Minimal layer time | 5 s |
m | m | m | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual | Estimated | Actual | Estimated | Actual | Estimated | ||||||||||
1 | 0 | 0 | 5.75 | 9.65 | 6.21 | 0 | 0 | 13.03 | 1.54 | 5.81 | 0 | 0 | 19.17 | 5.42 | 9.25 |
2 | 90 | 0 | 5.73 | 85.35 | 9.55 | 45 | 0 | 13.12 | 42.15 | 10.22 | 45 | 0 | 19.49 | 49.62 | 5.32 |
3 | 135 | 0 | 5.69 | 131.22 | 7.65 | 90 | 0 | 13.45 | 87.66 | 11.12 | 90 | 0 | 18.13 | 83.32 | 7.93 |
4 | 270 | 0 | 6.38 | 264.12 | 8.22 | 135 | 0 | 13.72 | 130.9 | 9.25 | 225 | 0 | 18.08 | 231.12 | 8.39 |
5 | 0 | 45 | 6.67 | 9.21 | 31.21 | 270 | 0 | 15.32 | 267.96 | 8.22 | 270 | 0 | 18.22 | 285.22 | 14.07 |
6 | 45 | 45 | 6.23 | 143.68 | 34.79 | 135 | 15 | 13.8 | 126.12 | 21.57 | 315 | 0 | 19.08 | 305.32 | 7.7 |
7 | 0 | 90 | 6.06 | 6.31 | 86.9 | 0 | 90 | 14.62 | 5.69 | 85.7 | 45 | 45 | 19.35 | 42.32 | 36.32 |
8 | 0 | 180 | 5.47 | 9.16 | 171.88 | 0 | 180 | 14.27 | 7.66 | 150.66 | 0 | 90 | 19.05 | 1.35 | 71.31 |
9 | 225 | 180 | 5.86 | 212.46 | 165.68 | 0 | 270 | 13.54 | 5.69 | 255.66 | 0 | 180 | 18.92 | 3.22 | 190.21 |
10 | 0 | 270 | 6.15 | 5.35 | 259.63 | 270 | 135 | 13.57 | 245.69 | 155.69 | 0 | 270 | 18.99 | 2.32 | 262.32 |
Distance Error | Angle Error | |||||||
---|---|---|---|---|---|---|---|---|
Index | (SPL) | (SPL) | () | (Alg. 1) | Index | (Alg. 1) | (SC) | |
() | 9.59 | 28.3 | 10.3 | |||||
(m) | 4.7 | 2.6 | 0.6 | 0.5 | Total AP | 1 | 9 | 0 |
Total AP (%) | 3.3 | 30 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, T.M.; Ahmad, N.S.; Goh, P.; Mohamad-Saleh, J. Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears. Sensors 2021, 21, 227. https://doi.org/10.3390/s21010227
Ting TM, Ahmad NS, Goh P, Mohamad-Saleh J. Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears. Sensors. 2021; 21(1):227. https://doi.org/10.3390/s21010227
Chicago/Turabian StyleTing, Te Meng, Nur Syazreen Ahmad, Patrick Goh, and Junita Mohamad-Saleh. 2021. "Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears" Sensors 21, no. 1: 227. https://doi.org/10.3390/s21010227
APA StyleTing, T. M., Ahmad, N. S., Goh, P., & Mohamad-Saleh, J. (2021). Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears. Sensors, 21(1), 227. https://doi.org/10.3390/s21010227