Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers
Abstract
:1. Introduction
2. Preliminaries
2.1. Receiver Circuit Designs
2.2. Communication Model
3. Transmission Schemes
3.1. Outage Probability and Transmitted Power
3.1.1. SISO
3.1.2. AS
3.1.3. SVD
3.2. Effect of the SAW-Filters at the LNA Receiver
3.3. Energy Efficiency
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bera, A. 80 Insightful Internet of Things Statistics (Infographic); White Paper; Safeatlast: Fultonham, NY, USA, 2019. [Google Scholar]
- Osseiran, A.; Parkvall, S.; Persson, P.; Zaidi, A.; Magnusson, S.; Balachandran, K. 5G Wireless Access: An Overview; White Paper; Ericsson: Stockholm, Switzerland, 2020. [Google Scholar]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Asaad, S.; Rabiei, A.M.; Müller, R.R. Massive MIMO with Antenna Selection: Fundamental Limits and Applications. IEEE Trans. Wirel. Commun. 2018, 17, 8502–8516. [Google Scholar] [CrossRef]
- Dos Santos, E.L.; Mariano, A.A.; Brante, G.; Leite, B.; Souza, R.D.; Taris, T. Energy Efficiency in Multiple Antenna Machine-Type Communications With Reconfigurable RF Transceivers. IEEE Access 2019, 7, 113031–113042. [Google Scholar] [CrossRef]
- Chen, J.C. Energy-Efficient Analog Combiner Design Using Low-Resolution Phase Shifters and Antenna Selection for mmWave D2D Communications. IEEE Trans. Veh. Technol. 2020. [Google Scholar] [CrossRef]
- Radfar, M.; Nakhlestani, A.; Viet, H.L.; Desai, A. Battery Management Technique to Reduce Standby Energy Consumption in Ultra-Low Power IoT and Sensory Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 336–345. [Google Scholar] [CrossRef]
- Hong, S.; Lee, S.; Lee, J.; Je, M. A Multi-Mode ULP Receiver Based on an Injection-Locked Oscillator for IoT Applications. IEEE Access 2020, 8, 76966–76979. [Google Scholar] [CrossRef]
- Georgantas, T.; Vavelidis, K.; Haralabidis, N.; Bouras, S.; Vassiliou, I.; Kapnistis, C.; Kokolakis, Y.; Peyravi, H.; Theodoratos, G.; Vryssas, K.; et al. 9.1 A 13 mm 240 nm multiband GSM/EDGE/HSPA+/TDSCDMA/LTE transceiver. In Proceedings of the 2015 IEEE International Solid-State Circuits Conference—(ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar]
- Parvizi, M.; Allidina, K.; El-Gamal, M. An Ultra-Low-Power Wideband Inductorless CMOS LNA with Tunable Active Shunt-Feedback. IEEE Trans. Microw. Theory Tech. 2016, 64, 1–11. [Google Scholar] [CrossRef]
- Guo, B.; Chen, J.; Li, L.; Jin, H.; Yang, G. A Wideband Noise-Canceling CMOS LNA with Enhanced Linearity by Using Complementary nMOS and pMOS Configurations. IEEE J. Solid-State Circuits 2017, 1–14. [Google Scholar] [CrossRef]
- Rahman, M.; Harjani, R. A 2.4-GHz, Sub-1-V, 2.8-dB NF, 475-μW Dual-Path Noise and Nonlinearity Cancelling LNA for Ultra-Low-Power Radios. IEEE J. Solid-State Circuits 2018, 53, 1423–1430. [Google Scholar] [CrossRef]
- Wagner, J.; Joram, N.; Lindner, B.; Ellinger, F. A fully integrated, four-element multi-standard beamforming ASIC for 2.4 and 5.8 GHz. In Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, 13–15 May 2019; pp. 419–422. [Google Scholar]
- Park, J.; Razavi, B. Channel Selection at RF Using Miller Bandpass Filters. Solid-State Circuits IEEE J. 2014, 49, 3063–3078. [Google Scholar] [CrossRef]
- Keehr, E.A.; Hajimiri, A. A Wide-Swing Low-Noise Transconductance Amplifier and the Enabling of Large-Signal Handling Direct-Conversion Receivers. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 30–43. [Google Scholar] [CrossRef]
- Geddada, H.M.; Fu, C.; Silva-Martinez, J.; Taylor, S.S. Wide-Band Inductorless Low-Noise Transconductance Amplifiers With High Large-Signal Linearity. IEEE Trans. Microw. Theory Tech. 2014, 62, 1495–1505. [Google Scholar] [CrossRef]
- Nejdel, A.; Sjoland, H.; Tormanen, M. A Noise-Cancelling Receiver Front-End With Frequency Selective Input Matching. Solid-State Circuits IEEE J. 2015, 50, 1137–1147. [Google Scholar] [CrossRef]
- Ramella, M.; Fabiano, I.; Manstretta, D.; Castello, R. A SAW-Less 2.4GHz Receiver Front-End with 2.4mA Battery Current for SoC Coexistence. IEEE J. Solid-State Circuits 2017, 52, 2292–2305. [Google Scholar] [CrossRef]
- Andrews, C.; Molnar, A.C. A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface. IEEE J. Solid-State Circuits 2010, 45, 2696–2708. [Google Scholar] [CrossRef]
- Friis, H.T. Noise Figures of Radio Receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
- Lee, T.H. The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Goldsmith, A. Wireless Communications, 1st ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wang, Z.; Giannakis, G. A simple and general parameterization quantifying performance in fading channels. IEEE Trans. Commun. 2003, 51, 1389–1398. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Brante, G.; Stupia, I.; Souza, R.D.; Vandendorpe, L. Outage Probability and Energy Efficiency of Cooperative MIMO with Antenna Selection. IEEE Trans. Wirel. Commun. 2013, 12, 5896–5907. [Google Scholar] [CrossRef]
- Qualcomm—TDK Joint Venture. SAW RF Filter—B4360 Datasheet; RF360 Europe GmbH: Munchen, Germany, December 2016. [Google Scholar]
- Chen, G.; Hanson, S.; Blaauw, D.; Sylvester, D. Circuit Design Advances for Wireless Sensing Applications. Proc. IEEE 2010, 98, 1808–1827. [Google Scholar] [CrossRef]
Architecture | Ref. | Freq. Range [GHz] | Gain [dB] | Power Consump. [mW] | Noise Figure [dB] |
---|---|---|---|---|---|
LNA | [10] | 0.1–2.2 | 12.3 | 0.4 | 5 |
[11] | 0.1–2 | 17.5 | 21.3 | 3.5 | |
[12] | 2.3–2.5 | 17.4 | 0.48 | 2.8 | |
LNTA | [14] | 0.05–2.5 | 38 | 20 | 2.9 |
[17] | 0.7–3.8 | 47 | 41.88 | 1.6 | |
[18] | 2–2.8 | 43.4 | 4.32 | 7.5 |
Parameter | Description | Value |
---|---|---|
B | Channel bandwidth | 20 MHz |
Link margin | 20 dB | |
Total antenna gain | 5 dBi | |
Carrier frequency | GHz | |
Noise PSD | dBm/Hz | |
Path loss exponent | ||
Target outage probability | ||
R | Spectral efficiency | 1 bit/s/Hz |
Power consumption at the TX | mW [27] | |
Power consumption at the RX | mW [27] | |
Drain efficiency of the PA | [27] | |
m | Nakagami-m fading parameter | 2 |
Architecture | Scheme | Distance | |||||||
---|---|---|---|---|---|---|---|---|---|
50 m | 100 m | 150 m | 200 m | 250 m | 300 m | 350 m | 400 m | ||
LNA [10] | SISO | ||||||||
AS | |||||||||
SVD | |||||||||
LNA [11] | SISO | ||||||||
AS | |||||||||
SVD | |||||||||
LNA [12] | SISO | ||||||||
AS | |||||||||
SVD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, E.N.; Theis, G.; Santos, E.L.d.; Mariano, A.A.; Brante, G.; Souza, R.D.; Taris, T. Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers. Sensors 2020, 20, 7070. https://doi.org/10.3390/s20247070
Junior EN, Theis G, Santos ELd, Mariano AA, Brante G, Souza RD, Taris T. Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers. Sensors. 2020; 20(24):7070. https://doi.org/10.3390/s20247070
Chicago/Turabian StyleJunior, Eduil Nascimento, Guilherme Theis, Edson Leonardo dos Santos, André Augusto Mariano, Glauber Brante, Richard Demo Souza, and Thierry Taris. 2020. "Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers" Sensors 20, no. 24: 7070. https://doi.org/10.3390/s20247070
APA StyleJunior, E. N., Theis, G., Santos, E. L. d., Mariano, A. A., Brante, G., Souza, R. D., & Taris, T. (2020). Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers. Sensors, 20(24), 7070. https://doi.org/10.3390/s20247070