Modeling and Prediction of Wearable Energy Harvesting Sliding Shoes for Metabolic Cost and Energy Rate Outside of the Lab
Abstract
:1. Introduction
2. Materials and Methods
2.1. Custom Sliding Shoe Design and Predictive Modeling
2.2. Experimental Protocol and Testing
- (1)
- walking at a self-selected normal speed wearing the custom sliding shoes
- (2)
- walking at a self-selected fast speed wearing the custom sliding shoes
- (3)
- walking at a self-selected normal speed wearing their own normal walking shoes
- (4)
- walking at a self-selected fast speed wearing their own normal walking shoes
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef] [PubMed]
- El-hami, M.; Glynne-Jones, P.; White, N.M.; Hill, M.; Beeby, S.; James, E.; Brown, A.D.; Ross, J.N. Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuator A Phys. 2001, 92, 335–342. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 2008, 96, 1457–1486. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Qin, Y.; Li, C.; Zhu, G.; Wang, Z.L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 2009, 9, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.X.; Wang, C.F.; Luk, P.C.K.; Miao, D.M.; Shi, D.; Xu, C. A shoe-equipped linear generator for energy harvesting. IEEE Trans. Ind. Appl. 2013, 49, 990–996. [Google Scholar] [CrossRef]
- Von Büren, T.; Mitcheson, P.D.; Green, T.C.; Yeatman, E.M.; Holme, A.S.; Tröster, G. Optimization of inertial micropower generators for human walking motion. IEEE Sens. J. 2006, 6, 28–37. [Google Scholar] [CrossRef]
- Williamson, J.; Liu, Q.; Lu, F.; Mohrman, W.; Li, K.; Dick, R.; Shang, L. Data sensing and analysis: Challenges for wearables. In Proceedings of the 20th Asia and South Pacific Design Automation Conference, ASP-DAC 2015, Chiba, Japan, 19–22 January 2015; pp. 136–141. [Google Scholar]
- Starner, T. Human-powered wearable computing. IBM Syst. J. 1996, 35, 618–629. [Google Scholar] [CrossRef]
- Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N. Parasitic power harvesting in shoes. In Proceedings of the International Symposium on Wearable Computers, Digest of Papers; IEEE Computer Society, Pittsburgh, PA, USA, 19–20 October 1998; pp. 132–139. [Google Scholar]
- Kornbluh, R.D.; Pelrine, R.; Pei, Q.; Heydt, R.; Stanford, S.; Oh, S.; Eckerle, J. Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. In Proceedings of the Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 17–21 March 2002; Volume 4698, pp. 254–270. [Google Scholar]
- Xie, L.; Cai, M. An In-Shoe Harvester with Motion Magnification for Scavenging Energy from Human Foot Strike. IEEE/ASME Trans. Mechatron. 2015, 20, 3264–3268. [Google Scholar] [CrossRef]
- Donelan, J.M.; Li, Q.; Naing, V.; Hoffer, J.A.; Weber, D.J.; Kuo, A.D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810. [Google Scholar] [CrossRef]
- Rome, L.C.; Flynn, L.; Goldman, E.M.; Yoo, T.D. Generating electricity while walking with loads. Science 2005, 309, 1725–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riemer, R.; Shapiro, A. Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 2011, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramble, D.M.; Lieberman, D.E. Endurance running and the evolution of Homo. Nature 2004, 432, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, A.; Farley, C.T.; Kram, R. Independent metabolic costs of supporting body weight and accelerating body mass during walking. J. Appl. Physiol. 2005, 98, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Browning, R.C.; Kram, R. Energetic cost and preferred speed of walking in obese vs. normal weight women. Obes. Res. 2005, 13, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Burdett, R.G.; Skrinar, G.S.; Simon, S.R. Comparison of mechanical work and metabolic energy consumption during normal gait. J. Orthop. Res. 1983, 1, 63–72. [Google Scholar] [CrossRef]
- Donelan, J.M.; Kram, R.; Kuo, A.D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J. Exp. Biol. 2002, 205, 3717–3727. [Google Scholar]
- Kim, E.S.; Lee, Y.W. Smart shoes for the monitoring of gait type and calorie expenditure. Sens. Lett. 2015, 13, 650–653. [Google Scholar] [CrossRef]
- Kubota, K.J.; Chen, J.A.; Little, M.A. Machine learning for large-scale wearable sensor data in Parkinson’s disease: Concepts, promises, pitfalls, and futures. Mov. Disord. 2016, 31, 1314–1326. [Google Scholar] [CrossRef]
- Özdemir, A.; Barshan, B. Detecting Falls with Wearable Sensors Using Machine Learning Techniques. Sensors 2014, 14, 10691–10708. [Google Scholar] [CrossRef]
- Mazilu, S.; Hardegger, M.; Zhu, Z.; Roggen, D.; Tröster, G.; Plotnik, M.; Hausdorff, J.M. Online detection of freezing of gait with smartphones and machine learning techniques. In Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, San Diego, CA, USA, 21–24 May 2012; pp. 123–130. [Google Scholar]
- Mannini, A.; Sabatini, A.M. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers. Sensors 2010, 10, 1154–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Chen, D.K.Y.; Zhu, X.; Shull, P.B. “Controlled Slip” Energy Harvesting while Walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.B.; Xia, H. Energy Harvesting Modeling and Prediction during Walking Gait for a Sliding Shoe. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–4. [Google Scholar]
- Brockway, J.M. Derivation of formulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr. 1987, 41, 463–471. [Google Scholar] [PubMed]
- Griffin, T.M.; Roberts, T.J.; Kram, R. Metabolic cost of generating muscular force in human walking: Insights from load-carrying and speed experiments. J. Appl. Physiol. 2003, 95, 172–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paradiso, J.A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 2005, 4, 18–27. [Google Scholar] [CrossRef]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward Pervasive Gait Analysis with Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, J.; Yu, B.; Shull, P.B. Validity of FitBit, Jawbone UP, Nike + and other wearable devices for level and stair walking. Gait Posture 2016, 48. [Google Scholar] [CrossRef]
- Lin, F.; Wang, A.; Zhuang, Y.; Tomita, M.R.; Xu, W. Smart Insole: A Wearable Sensor Device for Unobtrusive Gait Monitoring in Daily Life. IEEE Trans. Ind. Inform. 2016, 12, 2281–2291. [Google Scholar] [CrossRef]
- Xia, H.; Xu, J.; Wang, J.; Hunt, M.A.; Shull, P.B. Validation of a smart shoe for estimating foot progression angle during walking gait. J. Biomech. 2017, 61, 193–198. [Google Scholar] [CrossRef]
- Jarchi, D.; Lo, B.; Wong, C.; Ieong, E.; Nathwani, D.; Yang, G.Z. Gait Analysis from a Single Ear-Worn Sensor: Reliability and Clinical Evaluation for Orthopaedic Patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 882–892. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, R.S.; Mahadevan, N.; Moon, Y.; Seagers, K.; Sheth, N.; Wright, J.A.; DiCristofaro, S.; Silva, I.; Jortberg, E.; Ceruolo, M.; et al. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis. PLoS ONE 2017, 12, e0178366. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, N.; Nagasaki, H.; Ito, H.; Furuna, T. Optimal walking in terms of variability in step length. J. Orthop. Sports Phys. Ther. 1997, 26, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.; van der Esch, M.; van den Noort, J.C.; Harlaar, J. The learning process of gait retraining using real-time feedback in patients with medial knee osteoarthritis. Gait Posture 2018, 62, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.B.; Silder, A.; Shultz, R.; Dragoo, J.L.; Besier, T.F.; Delp, S.L.; Cutkosky, M.R. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J. Orthop. Res. 2013, 31, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
Subject | Age (years) | Height (cm) | Weight (kg) | Walking Condition | Walking Speed (m/s) | Step Freq (Hz) | Metabolic Rate (W) | Energy Harvesting Rate (mW) |
---|---|---|---|---|---|---|---|---|
1 | 26 | 171 | 70 | normal | 0.87 | 0.75 | 418.0 | 70.2 |
fast | 1.24 | 0.94 | 439.8 | 139.5 | ||||
2 | 28 | 160 | 53 | normal | 0.81 | 0.76 | 372.6 | 77.1 |
fast | 1.04 | 1.02 | 375.5 | 95.8 | ||||
3 | 27 | 173 | 60 | normal | 1.01 | 0.96 | 354.8 | 85.6 |
fast | 1.36 | 1.06 | 406.4 | 66.7 | ||||
4 | 24 | 169 | 69 | normal | 1.12 | 0.83 | 387.6 | 121.4 |
fast | 1.31 | 0.79 | 403.5 | 132.7 | ||||
5 | 33 | 175 | 74 | normal | 1.08 | 0.74 | 377.5 | 106.1 |
fast | 1.19 | 0.86 | 435.8 | 75.1 | ||||
6 | 24 | 171 | 60 | normal | 0.85 | 0.78 | 273.9 | 152.3 |
fast | 0.89 | 0.71 | 316.3 | 112.7 | ||||
7 | 24 | 180 | 85 | normal | 0.81 | 0.64 | 331.5 | 121.2 |
fast | 0.85 | 0.63 | 371.1 | 105.8 | ||||
8 | 36 | 183 | 65 | normal | 0.94 | 0.67 | 321.2 | 148.3 |
fast | 1.02 | 0.77 | 410.6 | 158.0 | ||||
9 | 25 | 170 | 66 | normal | 0.67 | 0.63 | 402.9 | 90.2 |
fast | 1.05 | 0.91 | 480.8 | 117.6 | ||||
10 | 25 | 175 | 65 | normal | 0.98 | 0.75 | 370.0 | 139.6 |
fast | 1.28 | 0.85 | 454.2 | 164.1 | ||||
11 | 25 | 170 | 64 | normal | 0.78 | 0.69 | 300.8 | 120.5 |
fast | 1.14 | 0.94 | 443.4 | 122.6 | ||||
12 | 22 | 173 | 65 | normal | 0.59 | 0.54 | 432.9 | 106.2 |
fast | 0.79 | 0.86 | 530.4 | 121.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shull, P.B.; Xia, H. Modeling and Prediction of Wearable Energy Harvesting Sliding Shoes for Metabolic Cost and Energy Rate Outside of the Lab. Sensors 2020, 20, 6915. https://doi.org/10.3390/s20236915
Shull PB, Xia H. Modeling and Prediction of Wearable Energy Harvesting Sliding Shoes for Metabolic Cost and Energy Rate Outside of the Lab. Sensors. 2020; 20(23):6915. https://doi.org/10.3390/s20236915
Chicago/Turabian StyleShull, Peter B., and Haisheng Xia. 2020. "Modeling and Prediction of Wearable Energy Harvesting Sliding Shoes for Metabolic Cost and Energy Rate Outside of the Lab" Sensors 20, no. 23: 6915. https://doi.org/10.3390/s20236915
APA StyleShull, P. B., & Xia, H. (2020). Modeling and Prediction of Wearable Energy Harvesting Sliding Shoes for Metabolic Cost and Energy Rate Outside of the Lab. Sensors, 20(23), 6915. https://doi.org/10.3390/s20236915