Optimal Placement of Social Digital Twins in Edge IoT Networks
Abstract
:1. Introduction
- propose a framework for the Social-aware Closest Edge Placement (SoCEP) of DTs that builds upon the edge computing and SIoT paradigms;
- formulate the SDT placement as a Mixed Integer Nonlinear Programming (MINLP) problem. The proposal accounts for the limited computing resources of edge servers, social relationships among IoT devices, and constraints on the latency in the connectivity between a physical device and the corresponding DT and in the inter-DT connectivity;
- further transform the MINLP problem into a Mixed Integer Linear Programming (MILP) problem by linear relaxation;
- evaluate the performance of the proposal against a baseline solution, which places the DT at the closest edge server and is agnostic w.r.t. social relationships, under different settings in terms of storage constraints on edge servers and latency demands.
2. Background and Motivations
2.1. Edge Computing for IoT
2.2. SIoT Basics
2.3. Motivations and Objectives
3. System Overview
3.1. Reference Architecture
3.2. System Model
4. Optimization Problem
4.1. Problem Definition
4.2. Complexity Analysis
4.3. Linearization
5. Performance Evaluation
5.1. Simulation Scenario
5.2. Benchmark
5.3. Metrics
- Average latency among SDTs of friend IoT devices. We measure this metric as the average latency between each couple of edge servers hosting SDTs whose corresponding physical devices are friends.
- Average latency for friends browsing. This metric includes both the latency between an IoT device and the edge server hosting the corresponding SDT plus the latency for browsing, one-by-one, all friend devices’ SDTs hosted in the edge infrastructure. The latter contribution is computed as the sum of the latencies experienced by an SDT to reach the edge servers hosting the SDTs of all friend devices, as read in the SDT table. The metric is used as an evaluation criterion for the proposed optimization model as it preserves all the kinds of latency contributions considered in Equation (8). It also allows one to figure out how the SDT placement affects the time needed for an IoT device to reach all friend devices, via the corresponding SDTs.
5.4. Simulation Results
5.5. Computation Time
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Cisco Visual Networking Index. Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper; Cisco: San Jose, CA, USA, 2017. [Google Scholar]
- Jonsson, P.; Carson, S.; Davis, S.; Blennerud, G.; Lindberg, P.; Öhman, K.; Travers, J.; Pedersen, F.; Linder, P.; Sethi, J.; et al. Ericsson Mobility Report; Ericsson: Stockholm, Sweden, 2020. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G.; Nitti, M. The Social Internet of Things (SIOT)—When Social Networks Meet the Internet of Things: Concept, Architecture and Network Characterization. Comput. Netw. 2012, 56, 3594–3608. [Google Scholar] [CrossRef]
- Roopa, M.; Pattar, S.; Buyya, R.; Venugopal, K.R.; Iyengar, S.; Patnaik, L. Social Internet of Things (SIoT): Foundations, Thrust Areas, Systematic Review and Future Directions. Comput. Commun. 2019, 139, 32–57. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. Sociocast: A New Network Primitive for IoT. IEEE Commun. Mag. 2019, 57, 62–67. [Google Scholar] [CrossRef]
- Atzori, L.; Campolo, C.; Iera, A.; Milotta, G.; Morabito, G.; Quattropani, S. Sociocast: Design, Implementation and Experimentation of a New Communication Method for the Internet of Things. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 662–667. [Google Scholar]
- Nitti, M.; Girau, R.; Atzori, L. Trustworthiness Management in the Social Internet of Things. IEEE Trans. Knowl. Data Eng. 2013, 26, 1253–1266. [Google Scholar] [CrossRef]
- Grieves, M. Origins of the Digital Twin Concept. 2016. Available online: Https://www.researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept (accessed on 30 June 2020).
- Wise, M. APM: Driving Value with the Digital Twin. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiDqOLgpNvsAhWBKqYKHVzYB-YQFjAAegQIBBAC&url=https%3A%2F%2Ffanyv88.com%3A443%2Fhttp%2Fcms.lgait.com%2Ftools%2Fdownload.ashx%3Fsite%3Dmobile%26id%3D127&usg=AOvVaw0j8wMUBbrqQu_01ZGoRYd1 (accessed on 30 October 2020).
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Alam, K.M.; El Saddik, A. C2PS: A Digital Twin Architecture Reference Model for the Cloud-based Cyber-Physical Systems. IEEE Access 2017, 5, 2050–2062. [Google Scholar] [CrossRef]
- Kaur, M.J.; Mishra, V.P.; Maheshwari, P. The Convergence of Digital Twin, IoT, and Machine Learning: Transforming Data into Action. In Digital Twin Technologies and Smart Cities; Springer: Cham, Switzerland, 2020; pp. 3–17. [Google Scholar]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G Era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Cearley, D.; Burke, B. Top 10 Strategic Technology Trends for 2019: A Gartner Trend Insight Report; Gartner: Orlando, FL, USA, 2018. [Google Scholar]
- Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2017, 20, 416–464. [Google Scholar] [CrossRef] [Green Version]
- Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The communication perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Nitti, M.; Pilloni, V.; Colistra, G.; Atzori, L. The Virtual Object as a Major Element of the Internet of Things: A Survey. IEEE Commun. Surv. Tutor. 2015, 18, 1228–1240. [Google Scholar] [CrossRef] [Green Version]
- Atzori, L.; Bellido, J.L.; Bolla, R.; Genovese, G.; Iera, A.; Jara, A.; Lombardo, C.; Morabito, G. SDN&NFV Contribution to IoT Objects Virtualization. Comput. Netw. 2019, 149, 200–212. [Google Scholar]
- He, T.; Khamfroush, H.; Wang, S.; La Porta, T.; Stein, S. It’s Hard to Share: Joint Service Placement and Request Scheduling in Edge Clouds with Sharable and Non-Sharable Resources. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; pp. 365–375. [Google Scholar]
- Wang, L.; Jiao, L.; He, T.; Li, J.; Mühlhäuser, M. Service Entity Placement for Social Virtual Reality Applications in Edge Computing. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 468–476. [Google Scholar]
- Fan, Q.; Ansari, N. On Cost Aware Cloudlet Placement for Mobile Edge Computing. IEEE/CAA J. Autom. Sin. 2019, 6, 926–937. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Premsankar, G.; Di Francesco, M.; Taleb, T. Edge Computing for the Internet of Things: A Case Study. IEEE Internet Things J. 2018, 5, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on Multi-Access Edge Computing for Internet of Things Realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961–2991. [Google Scholar] [CrossRef] [Green Version]
- Baktir, A.C.; Ozgovde, A.; Ersoy, C. How Can Edge Computing Benefit from Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Commun. Surv. Tutor. 2017, 19, 2359–2391. [Google Scholar] [CrossRef]
- Zhang, K.; Mao, Y.; Leng, S.; Zhao, Q.; Li, L.; Peng, X.; Pan, L.; Maharjan, S.; Zhang, Y. Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks. IEEE Access 2016, 4, 5896–5907. [Google Scholar] [CrossRef]
- Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [Google Scholar] [CrossRef] [Green Version]
- Samie, F.; Tsoutsouras, V.; Bauer, L.; Xydis, S.; Soudris, D.; Henkel, J. Computation Offloading and Resource Allocation for Low-Power IoT Edge Devices. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 7–12. [Google Scholar]
- Fan, Q.; Ansari, N. Application Aware Workload Allocation for Edge Computing-based IoT. IEEE Internet Things J. 2018, 5, 2146–2153. [Google Scholar] [CrossRef]
- Alam, M.G.R.; Hassan, M.M.; Uddin, M.Z.; Almogren, A.; Fortino, G. Autonomic Computation Offloading in Mobile Edge for IoT Applications. Future Gener. Comput. Syst. 2019, 90, 149–157. [Google Scholar] [CrossRef]
- Grieves, M. Digital Twin: Manufacturing Excellence Through Virtual Factory Replication (White Paper); Florida Institute of Technology: Melbourne, FL, USA, 2014; Volume 1, pp. 1–7. [Google Scholar]
- Giaffreda, R. iCore: A Cognitive Management Framework for the Internet of Things. In The Future Internet Assembly; Springer: Berlin/Heidelberg, Germany, 2013; pp. 350–352. [Google Scholar]
- Weyrich, M.; Ebert, C. Reference Architectures for the Internet of Things. IEEE Softw. 2015, 33, 112–116. [Google Scholar] [CrossRef]
- El Saddik, A. Digital Twins: The Convergence of Multimedia Technologies. IEEE MultiMedia 2018, 25, 87–92. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. EdgeIoT: Mobile Edge Computing for the Internet of Things. IEEE Commun. Mag. 2016, 54, 22–29. [Google Scholar] [CrossRef]
- Naas, M.I.; Parvedy, P.R.; Boukhobza, J.; Lemarchand, L. iFogStor: An IoT Data Placement Strategy for Fog Infrastructure. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 97–104. [Google Scholar]
- Zhao, L.; Liu, J. Optimal Placement of Virtual Machines for Supporting Multiple Applications in Mobile Edge Networks. IEEE Trans. Veh. Technol. 2018, 67, 6533–6545. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Tornatore, M.; Gupta, A.; Zhang, J.; Mukherjee, B. Virtual Machine Placement and Workload Assignment for Mobile Edge Computing. In Proceedings of the 2017 IEEE 6th International Conference on Cloud Networking (CloudNet), Prague, Czech Republic, 25–27 September 2017; pp. 1–6. [Google Scholar]
- Pasteris, S.; Wang, S.; Herbster, M.; He, T. Service Placement with Provable Guarantees in Heterogeneous Edge Computing Systems. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 514–522. [Google Scholar]
- Harutyunyan, D.; Shahriar, N.; Boutaba, R.; Riggio, R. Latency-Aware Service Function Chain Placement in 5G Mobile Networks. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24–28 June 2019; pp. 133–141. [Google Scholar]
- Xu, J.; Chen, L.; Zhou, P. Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 207–215. [Google Scholar]
- Poularakis, K.; Llorca, J.; Tulino, A.M.; Taylor, I.; Tassiulas, L. Joint Service Placement and Request Routing in Multi-Cell Mobile Edge Computing Networks. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 10–18. [Google Scholar]
- An, J.; Gui, X.; Zhang, W.; Jiang, J. Nodes Social Relations Cognition for Mobility-Aware in the Internet of Things. In Proceedings of the 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011; pp. 687–691. [Google Scholar]
- Alam, K.M.; Saini, M.; El Saddik, A. Toward Social Internet of Vehicles: Concept, Architecture, and Applications. IEEE Access 2015, 3, 343–357. [Google Scholar] [CrossRef]
- Ometov, A.; Orsino, A.; Militano, L.; Moltchanov, D.; Araniti, G.; Olshannikova, E.; Fodor, G.; Andreev, S.; Olsson, T.; Iera, A.; et al. Toward Trusted, Social-Aware D2D Connectivity: Bridging Aross the Technology and Sociality Realms. IEEE Wirel. Commun. 2016, 23, 103–111. [Google Scholar] [CrossRef]
- Andreev, S.; Hosek, J.; Olsson, T.; Johnsson, K.; Pyattaev, A.; Ometov, A.; Olshannikova, E.; Gerasimenko, M.; Masek, P.; Koucheryavy, Y.; et al. A Unifying Perspective on Proximity-based Cellular-Assisted Mobile Social Networking. IEEE Commun. Mag. 2016, 54, 108–116. [Google Scholar] [CrossRef]
- Militano, L.; Nitti, M.; Atzori, L.; Iera, A. Enhancing the Navigability in a Social Network of Smart Objects: A Shapley-value based Approach. Comput. Netw. 2016, 103, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Atzori, L.; Iera, A.; Morabito, G. From “Smart Objects” to “Social Objects”: The Next Evolutionary Step of the Internet of Things. IEEE Commun. Mag. 2014, 52, 97–105. [Google Scholar] [CrossRef]
- Afzal, B.; Umair, M.; Shah, G.A.; Ahmed, E. Enabling IoT Platforms for Social IoT Applications: Vision, Feature Mapping, and Challenges. Future Gener. Comput. Syst. 2019, 92, 718–731. [Google Scholar] [CrossRef]
- Patrono, L.; Atzori, L.; Šolić, P.; Mongiello, M.; Almeida, A. Challenges to be Addressed to Realize Internet of Things Solutions for Smart Environments. Future Gener. Comput. Syst. 2020, 111, 873–878. [Google Scholar] [CrossRef]
- Atzori, L.; Campolo, C.; Da, B.; Girau, R.; Iera, A.; Morabito, G.; Quattropani, S. Smart Devices in the Social Loops: Criteria and Algorithms for the Creation of the Social Links. Future Gener. Comput. Syst. 2019, 97, 327–339. [Google Scholar] [CrossRef]
- Al-Turjman, F. 5G-Enabled Devices and Smart-Spaces in Social-IoT: An Overview. Future Gener. Comput. Syst. 2019, 92, 732–744. [Google Scholar] [CrossRef]
- Voutyras, O.; Bourelos, P.; Gogouvitis, S.; Kyriazis, D.; Varvarigou, T. Social Monitoring and Social Analysis in Internet of Things Virtual Networks. In Proceedings of the 2015 18th International Conference on Intelligence in Next Generation Networks, Paris, France, 17–19 February 2015; pp. 244–251. [Google Scholar]
- Girau, R.; Martis, S.; Atzori, L. Lysis: A Platform for IoT Distributed Applications over Socially Connected Objects. IEEE Internet Things J. 2016, 4, 40–51. [Google Scholar] [CrossRef]
- Baccarelli, E.; Scarpiniti, M.; Naranjo, P.G.V.; Vaca-Cardenas, L. Fog of Social IoT: When the Fog Becomes Social. IEEE Netw. 2018, 32, 68–80. [Google Scholar] [CrossRef]
- Morabito, R. Virtualization on Internet of Things Edge Devices with Container Technologies: A Performance Evaluation. IEEE Access 2017, 5, 8835–8850. [Google Scholar] [CrossRef]
- Koopmans, T.C.; Beckmann, M. Assignment Problems and the Location of Economic Activities. Econom. J. Econom. Soc. 1957, 25, 53–76. [Google Scholar] [CrossRef]
- Frieze, A.M.; Yadegar, J. On the Quadratic Assignment Problem. Discret. Appl. Math. 1983, 5, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Adams, W.P.; Johnson, T.A. Improved Linear Programming-based Lower Bounds for the Quadratic Assignment Problem. DIMACS Ser. Discret. Math. Theor. Comput. Sci. 1994, 16, 43–77. [Google Scholar]
- IBM ILOG. IBM ILOG CPLEX Optimization Studio Documentation. 2020. Available online: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/COS_KC_home.html (accessed on 17 July 2020).
- IBM ILOG. IBM ILOG CPLEX Optimization Studio, Version 12.10.0. 2020. Available online: http://www.ilog.com/products/cplex (accessed on 17 July 2020).
- Landa, R.; Araújo, J.T.; Clegg, R.G.; Mykoniati, E.; Griffin, D.; Rio, M. The Large-Scale Geography of Internet Round Trip Times. In Proceedings of the 2013 IFIP Networking Conference, Brooklyn, NY, USA, 22–24 May 2013; pp. 1–9. [Google Scholar]
- Marche, C.; Atzori, L.; Pilloni, V.; Nitti, M. How to Exploit the Social Internet of Things: Query Generation Model and Device Profiles’ Dataset. Comput. Netw. 2020, 174, 107248. [Google Scholar] [CrossRef]
- ETSI. ETSI GS MEC 003 v1.1.1. Mobile Edge Computing (MEC); Framework and Reference Architecture; ETSI: Sophia Antipolis, France, 2016. [Google Scholar]
- Campolo, C.; Iera, A.; Molinaro, A.; Ruggeri, G. MEC Support for 5G-V2X Use Cases through Docker Containers. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
Parameter | Description |
---|---|
Weighted undirected graph of physical IoT devices | |
Set of physical IoT devices | |
Set of links between physical IoT devices | |
Weighted undirected graph of edge servers | |
Set of edge servers | |
Set of links between edge servers | |
Latency between physical device and its SDTs placed at edge server | |
Latency between edge servers | |
Cost of connections between devices and their SDTs placed at edge servers | |
Capacity of an edge server (maximum number of SDTs to be stored per edge server) | |
Maximum latency between a physical device and its SDT | |
Physical distance between IoT device i and edge server k (that hosts its SDT) | |
Physical distance between SDTs deployed at edge servers | |
Binary Variable | Description |
Physical IoT device is connected to device | |
SDT of device is mapped to edge server | |
SDT of device is mapped to edge server and SDT of device is assigned to edge server |
Parameter | Value |
---|---|
Number of IoT devices, N | 150 |
Number of edge servers, M | 9 |
Capacity of an edge server, | var |
Maximum latency between a devices and an edge server, | var |
Distance to latency mapping coefficient, | 3.33 ms/km [65] |
3 ms | 3.5 ms | 4 ms | 4.5 ms | 5 ms | 5.5 ms | 6 ms | 6.5 ms | >7 ms | |
---|---|---|---|---|---|---|---|---|---|
Time | 1.6 s | 3.7 s | 5.8 s | 7.1 s | 46.8 s | 1534.4 s | 2601.5 s | 2718.4 s | 4380.9 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukhno, O.; Chukhno, N.; Araniti, G.; Campolo, C.; Iera, A.; Molinaro, A. Optimal Placement of Social Digital Twins in Edge IoT Networks. Sensors 2020, 20, 6181. https://doi.org/10.3390/s20216181
Chukhno O, Chukhno N, Araniti G, Campolo C, Iera A, Molinaro A. Optimal Placement of Social Digital Twins in Edge IoT Networks. Sensors. 2020; 20(21):6181. https://doi.org/10.3390/s20216181
Chicago/Turabian StyleChukhno, Olga, Nadezhda Chukhno, Giuseppe Araniti, Claudia Campolo, Antonio Iera, and Antonella Molinaro. 2020. "Optimal Placement of Social Digital Twins in Edge IoT Networks" Sensors 20, no. 21: 6181. https://doi.org/10.3390/s20216181