An Integrated IoT Architecture for Smart Metering Using Next Generation Sensor for Water Management Based on LoRaWAN Technology: A Pilot Study
Abstract
:1. Introduction
- The load on the pumps will be reduced, which will be reflected primarily in longer service life and lower maintenance costs
- Better sustainability and management of current water resources (in certain parts of the year, for example, restrictions on drinking water consumption are announced when, for example, it is forbidden to water gardens, etc., with tap water)
- Early detection of unusual conditions—such as unauthorized entry into the shaft, drop in ambient temperature below the allowable value or detection of zero water consumption at a certain time (used, for example, to check senior citizens, wherein zero water consumption may mean a health issue of this person)
- Fault detection—for example, water meter failure, backflow or attempted unauthorized manipulation of the water meter.
- Gas injection method: Is very effective in cases where acoustic methods cannot be used due to the absence of sound signals. Tracer gas, which spreads well through the pipeline and rises to the surface at the point of the defect, where it can be located with a suitable measuring device with sensitivity to this gas, is fed into the circulation system.
- Manual listening stick: Is used to listen to the leaks on fittings and to pinpoint the location of the leak. The listening stick may be made of metal, wood, or plastic.
- Noise logger corelation: These devices are placed in accessible places on the pipeline, where they try to detect and evaluate the noise. The leakage is always located between two noise loggers, where the position of the fault can be calculated [30].
Related Works and Solutions
2. Matherial and Methods
- Modularity between the modules connected for reading the data from the sensors and the rest of the system
- Use of exclusively standardized interfaces
- Possibility to connect other external sensors (e.g., a flood sensor) via these standardized interfaces
- DC-DC converter to the battery power supply
- Minimum battery life of two years
- Integration of the LoraWAN gateway into the data transmission system
- Data transmission interval from the device to the gateway, at least once an hour.
- Low production costs for surface deployment
2.1. Carrier Board
2.2. M2.COM Processor Unit
2.3. Reading Module
2.4. Firmware
2.5. Transmission Frequency
2.6. Energy Consumption
2.7. LoraWAN Gateway
LoraWAN Transmission Technology
3. Results
3.1. Signal Coverage Test
Measurements in Zdarna Village
3.2. Measurement in Real Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Automatic meter reading |
BW | Bandwidth |
CNN | Convolutional Neural Network |
CR | Coding Rate |
FSK | Frequency-Shift Keying |
GPS | Global Positioning System |
IoT | Internet of Things |
I2C | Inter-Integrated Circuit |
LPWAN | Low-Power Wide-Area Network |
MCU | Microcontroller unit |
MNF | Minimal Night Flow |
NB-IoT | NarrowBand-Internet of Things |
PCB | Printed circuit board |
PLC | Programmable logic controller |
RSSI | Received Signal Strength Indication |
SF | Spreading Factor |
SMD | Surface Mount Device |
SPI | Serial Peripheral Interface |
SNR | Signal-to-noise ratio |
SWD | Serial Wire Debug |
UART | Universal asynchronous receiver-transmitter |
References
- Khan, S.J.; Deere, D.; Leusch, F.D.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [PubMed]
- Intersucho. Intersucho.cz [Online]. Available online: https://www.intersucho.cz/en/ (accessed on 6 July 2020).
- World Resources Institute—Aqueduct Water Risk Atlas. Aqueduct [Online]. Available online: https://www.wri.org/aqueduct (accessed on 6 July 2020).
- Czech Hydrometeorological Institute. Historical Data—Meteorology and Climatology. Czech Hydrometeorological Institute [Online].. Available online: http://portal.chmi.cz/historicka-data/pocasi/zakladni-informace?l=en (accessed on 6 July 2020).
- Grillakis, M.G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total. Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R. Climate Extremes: Observations, Modeling, and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van Lanen, H.A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef] [Green Version]
- Stagge, J.H.; Kingston, D.G.; Tallaksen, L.M.; Hannah, D.M. Observed drought indices show increasing divergence across Europe. Sci. Rep. 2017, 7, 14045. [Google Scholar] [CrossRef]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Rho, S.; Rho, S. Urban planning and building smart cities based on the Internet of Things using Big Data analytics. Comput. Netw. 2016, 101, 63–80. [Google Scholar] [CrossRef]
- Saab, C.; Shahrour, I.; Chehade, F.H. Risk Assessment of Water Accidental Contamination Using Smart Water Quality Monitoring. Expo. Health 2020, 12, 281–293. [Google Scholar] [CrossRef]
- Gong, J.; Lambert, M.F.; Stephens, M.L.; Cazzolato, B.; Zhang, C. Detection of Emerging through-Wall Cracks for Pipe Break Early Warning in Water Distribution Systems Using Permanent Acoustic Monitoring and Acoustic Wave Analysis. Water Resour. Manag. 2020, 34, 2419–2432. [Google Scholar] [CrossRef]
- Thomas, B.; Damien, G.; Pierre, M.; Ariane, L.; Candice, M.; Stuart, W.; Rodney, S. Inteligent Metering for Urban Water: A Review. Water 2013, 5, 1052–1081. [Google Scholar]
- Alvisi, S.; Casellato, F.; Franchini, M.; Govoni, M.; Luciani, C.; Poltronieri, F.; Riberto, G.; Stefanelli, C.; Tortonesi, M. Wireless Middleware Solutions for Smart Water Metering. Sensors 2019, 8, 1853. [Google Scholar] [CrossRef] [Green Version]
- EurEau—Europe’s Water in Figures. An Overview of the European Drinking Water and Waste Water Sectors. 2017. Available online: https://www.danva.dk/media/3645/eureau_water_in_figures.pdf#page=15 (accessed on 5 June 2020).
- Li, X.J.; Chong, P.H.J. Design and Implementation of a Self-Powered Smart Water Meter. Sensors 2019, 19, 4177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Act No. 274/2001 Coll—The Water Supply and Sewerage System Act. Available online: https://public.psp.cz/en/sqw/sbirka.sqw?cz=274&r=2001 (accessed on 30 June 2020).
- Report on Water Management in the Czech Republic in 2018. 2019. Available online: http://eagri.cz/public/web/file/640180/Modra_zprava_2018_ENG_web.pdf (accessed on 15 July 2020).
- PVK a. s. in 2019—Annual Report. 2019. Available online: https://www.pvk.cz/res/archive/1566/230634.pdf?seek=1594712230 (accessed on 15 July 2020).
- Combined Report—Annual Report, Annual Performance Report and Sustainability Report 2019/20. 2019. Available online: https://www.thameswater.co.uk/about-us/investors/our-results (accessed on 15 July 2020).
- Jamie, L.; Jesus, T.; Canovas, A.; Parra, L. An Integrated IoT Architecture for Smart Metering. IEEE Commun. Mag. 2016, 54, 50–57. [Google Scholar]
- Kabalci, Y.; Kabalci, E.; Padmanaban, S.; Bo, H.N.J.; Blaabjerg, F. Internet of things applications as energy internet in smart grids and smart environments. Electronics 2019, 8, 972. [Google Scholar] [CrossRef] [Green Version]
- Vavrinsky, E.; Kotradyova, V.; Svobodova, H.; Kopani, M.; Donoval, M.; Sedlak, S.; Subjak, J.; Zavodnik, T. Detection of Advanced Wireless Sensors Used to Monitor the Impact of Environment Design on Human Physiology. Adv. Electr. Electron. Eng. 2019, 17, 320–329. [Google Scholar]
- Nedoma, J.; Fajkus, M.; Bednarek, L.; Vasinek, V. Non-destructive Fiber-optic Sensor System for the Measurement of Speed in Road Traffic. Adv. Electr. Electron. Eng. 2016, 14, 602–608. [Google Scholar] [CrossRef]
- Hsia, S.C.; Hsu, S.W.; Chang, Y. Remote monitoring and smart sensing for water meter system and leakage detection. IET Wirel. Sens. Syst. 2012, 2, 402–408. [Google Scholar] [CrossRef]
- Rodney, A.S.; Rachelle, W.; Damien, G.; Kriengsak, P.; Guillermo, C. Web-based knowledge management system: Linking smart metering to the future of urban water planning. Aust. Plan. 2010, 47, 66–74. [Google Scholar]
- Farah, E.; Shahrour, I. Smart water for leakage detection: Feedback about the use of automated meter reading technology. In Proceedings of the 2017 Sensors Networks Smart Emerging Technologies (SENSET), Beirut, Lebanon, 12–14 September 2017; pp. 1–4. [Google Scholar]
- Hamilton, S.; Charalambous, B. Leak Detection: Technology and Implementation; IWA Publishing: London, UK, 2013; ISBN 9781780404707. Available online: https://library.oapen.org/handle/20.500.12657/33035 (accessed on 15 July 2020).
- Xu, J.; Chai, K.T.C.; Wu, G.; Han, B.; Wai, E.L.C.; Li, W.; Yeo, J.; Nijhof, E.; Gu, Y. Low-cost, tiny-sized MEMS hydrophone sensor for water pipeline leak detection. IEEE Trans. Ind. Electron. 2019, 66, 6374–6382. [Google Scholar] [CrossRef]
- Martini, A.; Rivola, A.; Troncossi, M. Autocorrelation Analysis of Vibro-Acoustic Signals Measured in a test field for water leak detection. Appl. Sci. 2018, 8, 2450. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Song, Y.; Zhou, G. Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement 2018, 115, 39–44. [Google Scholar] [CrossRef]
- Fahmy, M.; Moselhi, O. Automated detection and location of leaks in water mains using infrared photography. J. Perform. Constr. Facil. 2010, 24, 242–248. [Google Scholar] [CrossRef]
- Pauline, E.; Alvarado, C.; Meza, G.-R. Water leak detection by termographic image analysis, in laboratory tests. Proceedings 2020, 48, 15. [Google Scholar] [CrossRef] [Green Version]
- Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018, Amending Directive 2012/27/EU on Energy Efficiency. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L2002 (accessed on 5 June 2020).
- Jin, G.; Bai, K.; Zhang, Y.; He, H. A smart water metering system based on image recognition and narrowband internet of things. Rev. D’Intell. Artif. 2019, 33, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Su, Y.; Yuan, R.; Chu, D.; Zu, A.J. Light-weight spliced convolution network-based automatic water meter reading in smart city. IEEE Access 2019, 7, 174359–174360. [Google Scholar] [CrossRef]
- Ding, X.Y.; Zhang, J.P.; Yang, J. A robust two-stage algorithm for local community detection. Knowl. Based Syst. 2018, 152, 188–199. [Google Scholar] [CrossRef]
- Kelnar, M.; Martinek, R.; Machacek, Z.; Vanus, J.; Bilik, P.; Zidek, J. Realization of prototype of a low-cost bidirectional communication system through fibreless optics. Wirel. Pers. Commun. 2016, 91, 137–150. [Google Scholar] [CrossRef]
- Al-Ali, A.R.; Landolsi, T.; Hassan, M.H.; Ezzeddine, M.; Abdelsalam, M.; Baseet, M. An IoT-Based Smart Utility Meter. In Proceedings of the 2nd International Conference on Smart Grid and Smart Cities, Kuala Lumpur, Malaysia, 12–14 August 2018; pp. 80–83. [Google Scholar]
- Anjana, S.; Sahana, M.N.; Ankith, S.; Natarajan, K.; Shobha, M. An IoT based 6LoWPAN enabled experiment for water managementr. In Proceedings of the 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), Kolkata, India, 15–18 December 2015; pp. 1–6. [Google Scholar]
- Taufik, M.; Rakhmania, A.E.; Afnani, Y.N. Prepaid water meter card based on internet of things. In Proceedings of the 1st Annual Technology, Applied Science and Engineering Conference, East Java, Indonesia, 29–30 August 2019. [Google Scholar]
- Lee, C.-H.; Jeon, H.-K.; Hong, Y.-S. An implementation of ultrasonic water meter using dToF measurement. Cogent Eng. 2017, 4, 1371577. [Google Scholar] [CrossRef]
- Wang, J.-X.; Liu, Y.; Lei, Z.-B.; Wu, K.-H.; Zhao, X.-Y.; Feng, C.; Liu, H.-W.; Shuai, X.-H.; Tang, Z.-M.; Wu, L.-Y.; et al. Smart water lora IoT system. In Proceedings of the 2018 International Conference on Communication Engineering and Technology, Singapore, 24–26 February 2018; pp. 48–51. [Google Scholar]
- Luo, A.; Jiang, Y.; Li, Z.; Zhao, W. A new ultrasonic water meter with window time adjustment algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 052070. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Lv, M.; Dong, S.; He, Y.; Wu, S. Investigation on water recording system for large user of water supply network based on PLC. Procedia Environ. Sci. 2011, 11, 1016–1022. [Google Scholar]
- Khutsoane, O.; Isong, B.; Gasela, N.; Abu-Mahfouz, M. Water grid-gense: A loRa-based sensor node for industrial IoT applications. IEEE Sens. J. 2020, 20, 2722–2729. [Google Scholar] [CrossRef]
- Codeluppi, G.; Cilfone, A.; Ferrarnn, G. LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture. Sensors 2020, 20, 2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A survey of LoRaWAN for IoT: From technology to application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joris, L.; Dupont, F.; Laurent, P.; Bellier, P.; Stoukatch, S.; Redoute, J. An autonomous sigfox wireless sensor node for environmental monitoring. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Rubio-Aparicio, J.; Cerdan-Cartagena, F.; Suardiaz-Muro, J.; Ybarra-Moreno, J. Design and implementation of a mixed IoT LPWAN network architecture. Sensors 2019, 19, 675. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Wang, M.; Lin, H.; Lin, H.; Gao, Z.; Huang, L. NB-IOT pipeline water leakage automatic monitoring system based on cloud platform. In Proceedings of the 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 25–27 October 2019; pp. 272–276. [Google Scholar]
- Borrero, J.D.; Zabalo, A. An autonomous wireless device for real-time monitoring of water needs. Sensors 2020, 20, 2078. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Navarro-Ortiz, J.; Chinchilla-Romero, N.; Ramos-Munoz, J.J.; Munoz-Luengo, P. Improving hardware security for LoRaWAN. In Proceedings of the 2019 IEEE Conference on Standards for Communications and Networking, CSCN 2019, Granada, Spain, 28–30 October 2019. [Google Scholar]
- Coman, F.L.; Malarski, K.M.; Petersen, M.N.; Ruepp, S. Security issues in internet of things: Vulnerability analysis of LoRaWAN, sigfox and NB-IoT. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019. [Google Scholar]
- Dolezal, J.; Zeman, T. Introduction to the computation offloading from mobile devices to the edge of mobile network. Adv. Electr. Electron. Eng. 2019, 17, 413–422. [Google Scholar] [CrossRef]
- Linear Technology Corporation. [Datasheet]. LTC3129. ©2013. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/3129fc.pdf (accessed on 24 May 2020).
- STMicroelectronics. [Datasheet]. STM32L431RB. ©2018. Available online: https://www.st.com/resource/en/datasheet/stm32l431rb.pdf (accessed on 24 May 2020).
- Silicon Laboratories Inc. [Datasheet]. Si7006-A20-IM. ©2016. Available online: https://www.silabs.com/documents/public/data-sheets/Si7006-A20.pdf (accessed on 24 May 2020).
- Cypress Semiconductor Corporation. [Datasheet]. FM24CL16B-DG. ©2018. Available online: https://www.cypress.com/file/136491/download (accessed on 24 May 2020).
- Microchip Technology Inc. [Datasheet]. RN2483. ©2015. Available online: https://ww1.microchip.com/downloads/en/DeviceDoc/40001784B.pdf (accessed on 24 May 2020).
- ON Semiconductor. [Datasheet]. NC7WZ14. ©2019. Available online: https://www.onsemi.com/pub/Collateral/NC7WZ14-D.PDF (accessed on 24 May 2020).
- Elliott, T.; Pike, L.; Winwood, S.; Hickey, P.; Bielman, J.; Sharp, J.; Seidel, E.; Launchbury, J. Guilt Free Ivory. ACM Sigplan Not. 2015, 10, 189–200. [Google Scholar]
- Jaloyan, G.-A.; Pike, L. Lock optimization for hoare monitors in real-Time systems. In Proceedings of the 2017 17th International Conference on Application of Concurrency to System Design (ACSD), Zaragoza, Spain, 25–30 June 2017; pp. 49–53. [Google Scholar]
- STM32Cube Initialization Code Generator. STMicroelectronic [Software], Version 5.6.1. Available online: https://www.st.com/en/development-tools/stm32cubemx.html#get-software (accessed on 17 July 2020).
- Raspberry Pi Foundantion. [Datasheet]. RaspberryPi 3 B+. ©2019. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ (accessed on 30 May 2020).
- Gonzalo Casas. [GitHub Project]. IC880A Backplane. ©2016. Available online: https://github.com/gonzalocasas/ic880a-backplane/ (accessed on 30 May 2020).
- LoraAliance. LoRaWAN™ What Is It? [Online]. ©2015. Available online: https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf (accessed on 26 May 2020).
- Mroue, H.; Nasser, A.; Parrein, B.; Hamrioui, S.; Mona-Cruz, E.; Rouyer, G. Analytical and simulation study for LoRa modulation. In Proceedings of the 2018 25th International Conference on Telecommunications (ICT), St. Malo, France, 26–28 June 2018; pp. 655–659. [Google Scholar]
- LoraAliance. LoRaWAN™ 1.0.2 Regional Parameters. [Online]. ©2017. Available online: https://lora-alliance.org/sites/default/files/2018-05/lorawan_regional_parameters_v1.0.2_final_1944_1.pdf (accessed on 26 May 2020).
- Bezzera, N.; Åhlund, C.; Saguna, S.; Sousa, V., Jr. Temperature Impact in LoRaWAN—A Case Study in Northern Sweden. Sensors 2019, 19, 4414. [Google Scholar] [CrossRef] [Green Version]
- SENSUS. [Datasheet]. 420 WATER METER. ©2010. Available online: https://sensus.webdamdb.com/bp/#/search/?q=%22420%20Water%20Meter%22&filters=%257B%257D (accessed on 30 May 2020).
- Online Statistics Education: A Multimedia Course of Study. Project Leader: David M. Lane, Rice University. Available online: http://onlinestatbook.com/2/advanced_graphs/q-q_plots.html (accessed on 2 July 2020).
- Barradas, I.; Garza, L.E.; Morales-Menendez, R.; Vargas-martínez, A. Leaks Detection in a Pipeline Using Artificial Neural Networks. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Application, CIARP 2009, Jalisco, Mexico, 15–18 November 2009. [Google Scholar]
- Abdulla, M.B.; Herzallah, R.O.; Hammad, M.A. Pipeline leak detection using artificial neural network: Experimental study. In Proceedings of the 2013 5th International Conference on Modelling, Identification and Control (ICMIC), Cairo, Egypt, 31 August–2 September 2013; pp. 328–332. [Google Scholar]
Chip type | STM32L431RB |
SRAM memory size | 64 kB |
FLASH memory size | 128 kB |
Operating voltage | 1.71–3.6 V |
Core frequency | 80 MHz |
Pin count | 64 pins |
Temperature range | −40 C–105 C |
I2C | 3 |
UART | 3 |
SPI | 3 |
Frequency Range (MHz) | 824 MHz–960 MHz |
---|---|
Bandwidth (MHz) | 70 |
Gain (dBi) | 10 |
VSWR kHz | <=1.5 |
Input Impedance ( ) | 50 |
Polarization | Vertical |
Maximum input power (W) | 50 |
Lightning protection | DC Ground |
Input connector type | N Female |
Operating temperature (C) | −40–60 |
Data Rate | Configuration | Approximate Physical Bit Rate (bit/s) |
---|---|---|
0 | SF12/125 kHz | 250 |
1 | SF11/125 kHz | 440 |
2 | SF10/125 kHz | 980 |
3 | SF9/125 kHz | 1760 |
4 | SF8/125 kHz | 3125 |
5 | SF7/125 kHz | 5470 |
Date and Time | 2020–04–21 @ 09:28 |
---|---|
Node | MONSTICK5 |
Gateway ID | 40D63CFFFE1F4309 |
Location accuracy | 10.00 |
Packet ID | 14508882 |
Distance | 212.0 m |
Data rate | SF12BW125 |
Frequency | 867.7 MHz |
RSSI (Received Signal Strength Indication) | −76.0 |
SNR ( Signal-to-noise ratio) | 9.8 |
Altitude | 641.4 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slaný, V.; Lučanský, A.; Koudelka, P.; Mareček, J.; Krčálová, E.; Martínek, R. An Integrated IoT Architecture for Smart Metering Using Next Generation Sensor for Water Management Based on LoRaWAN Technology: A Pilot Study. Sensors 2020, 20, 4712. https://doi.org/10.3390/s20174712
Slaný V, Lučanský A, Koudelka P, Mareček J, Krčálová E, Martínek R. An Integrated IoT Architecture for Smart Metering Using Next Generation Sensor for Water Management Based on LoRaWAN Technology: A Pilot Study. Sensors. 2020; 20(17):4712. https://doi.org/10.3390/s20174712
Chicago/Turabian StyleSlaný, Vlastimil, Adam Lučanský, Petr Koudelka, Jan Mareček, Eva Krčálová, and Radek Martínek. 2020. "An Integrated IoT Architecture for Smart Metering Using Next Generation Sensor for Water Management Based on LoRaWAN Technology: A Pilot Study" Sensors 20, no. 17: 4712. https://doi.org/10.3390/s20174712