Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wireless Implantable Biomicrosystem
2.2. System Validation
2.3. Safety Validation
2.4. Animal Experiment
2.5. In Vivo Cytotoxicity Tests
3. Results
3.1. Overall Structure of The Wireless Mini-Invasive Biomicrosystem
3.2. Experimental Setup For System Validation
3.3. Safety Validation
3.4. Animal Experiment
3.5. In Vivo Cytotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, H.Y.; Peng, C.W.; Chen, J.J.J.; Cheng, C.L.; de Groat, W.C. The time-frequency analysis of the pudendo-to-pudendal nerve and pelvic-to-pudendal nerve reflexes in anesthetized intact rats. J. Med. Biol. Eng. 2004, 24, 17–22. [Google Scholar]
- Abrams, P.; Cardozo, L.; Fall, M.; Griffiths, D.; Rosier, P.; Ulmsten, U.; Kerrebroeck, P.V.; Victor, A.; Wein, A. Standardisation sub-committee of the international continence society, the standardisation of terminology of lower urinary tract function: Report from the standardisation sub-committee of the international continence society. Neurourol. Urodyn. 2002, 21, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Ghoniem, G.M.; Regnier, C.H.; Biancani, P.; Johnson, L.; Susset, J.G. Effect of vesical outlet obstruction on detrusor contractility and passive properties in rabbits. J. Urol. 1986, 135, 1284–1289. [Google Scholar] [CrossRef]
- Sillen, U. Bladder dysfunction and vesicoureteral reflux. Adv. Urol. 2008, 2008. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Homma, Y.; Fujishiro, T.; Hosaka, Y.; Kitamura, T.; Kawabe, K. Electromyographic study of the striated urethral sphincter in type 3 stress incontinence: Evidence of myogenic-dominant damages. Urology 2000, 56, 946–950. [Google Scholar] [CrossRef]
- Nosseir, M.; Hinkel, A.; Pannek, J. Clinical usefulness of urodynamic assessment for maintenance of bladder function in patients with spinal cord injury. Neurourol. Urodyn. 2007, 26, 228–233. [Google Scholar] [CrossRef]
- Wille, S.; Schumacher, P.; Paas, J.; Tenholte, D.; Eminaga, O.; Muller, U.; Muthen, N.; Mehner, J.; Cornely, O.; Engelmann, U. Catheterless long-term ambulatory urodynamic measurement using a novel three-device system. PLoS ONE 2014, 9, e96280. [Google Scholar] [CrossRef]
- Dakurah, M.N.; Koo, C.; Choi, W.; Joung, Y.H. Implantable bladder sensors: A methodological review. Int. Neurourol. J. 2015, 19, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Kim, B.J.; Meng, E. Chronically implanted pressure sensors: Challenges and state of the field. Sensors 2014, 14, 20620–20644. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Hsieh, T.H.; Fan, W.J.; Lai, C.H.; Chen, C.L.; Wei, W.F.; Peng, C.W. Design and evaluation of potentiometric principles for bladder volume monitoring: A preliminary study. Sensors 2015, 15, 12802–12815. [Google Scholar] [CrossRef] [Green Version]
- Coosemans, J.; Puers, R. An autonomous bladder pressure monitoring system. Sens. Actuators. A Phys. 2005, 123, 155–161. [Google Scholar] [CrossRef]
- Majerus, S.J.; Garverick, S.L.; Suster, M.A.; Fletter, P.C.; Damaser, M.S. Wireless, ultra-low-power implantable sensor for chronic bladder pressure monitoring. ACM J. Emerg. Technol. Comput. Syst. 2012, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melgaard, J.; Rijkhoff, N.J. Detecting the onset of urinary bladder contractions using an implantable pressure sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; McClure, T.; Lin, C.K.; Jea, D.; Dabiri, F.; Massey, T.; Sarrafzadeh, M.; Srivastava, M.; Montemagno, C.D.; Schulam, P.; et al. Development of a fully implantable wireless pressure monitoring system. Biomed. Microdevices 2009, 11, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Huang, C.C.; Liou, J.S.; Ciou, Y.J.; Huang, I.Y.; Li, C.P.; Lee, Y.C.; Wu, W.J. A mini-invasive long-term bladder urine pressure measurement ASIC and system. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Majerus, S.J.; Fletter, P.C.; Damaser, M.S.; Garverick, S.L. Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring. IEEE Trans. Biomed. Eng. 2010, 58, 763–767. [Google Scholar] [CrossRef]
- Young, D.J.; Cong, P.; Suster, M.A.; Damaser, M. Implantable wireless battery recharging system for bladder pressure chronic monitoring. Lab Chip 2015, 15, 4338–4347. [Google Scholar] [CrossRef]
- Jourand, P.; Puers, R. The bladder pill: An in-body system logging bladder pressure. Sens. Actuators. A Phys. 2010, 162, 160–166. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, D.S.; Kim, I.G.; Sohn, D.W.; Park, J.Y.; Choi, B.K.; Kim, S.W. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. Kaohsiung J. Med. Sci. 2012, 28, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, W.; Abrams, P.; Liao, L.; Mattiasson, A.; Pesce, F.; Spangberg, A.; Sterling, A.M.; Zinner, N.R.; Kerrebroeck, P.V. International Continence Society, Good urodynamic practices: Uroflowmetry, filling cystometry, and pressure-flow studies. Neurourol. Urodyn. 2002, 21, 261–274. [Google Scholar] [CrossRef]
- Jen, E.; Hsieh, T.H.; Lu, T.C.; Chen, M.C.; Lee, F.J.; Lin, C.T.; Chen, S.C.; Chu, P.Y.; Peng, C.W.; Lin, C.W. Effects of pulsed-radiofrequency neuromodulation on the rat with overactive bladder. Neurourol. Urodyn. 2017, 36, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Praveen Rajneesh, C.; Lai, C.H.; Chen, S.C.; Hsieh, T.H.; Chin, H.Y.; Peng, C.W. Improved voiding function by deep brain stimulation in traumatic brain-injured animals with bladder dysfunctions. Int. Urol. Nephrol. 2019, 51, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Praveen Rajneesh, C.; Yang, L.Y.; Chen, S.C.; Hsieh, T.H.; Chin, H.Y.; Peng, C.W. Cystometric measurements in rats with an experimentally induced traumatic brain injury and voiding dysfunction: A time-course study. Brain Sci. 2019, 9, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobberfuhl, A.D.; Spettel, S.; Schuler, C.; Levin, R.M.; Dubin, A.H.; De, E.J. Noxious electrical stimulation of the pelvic floor and vagina induces transient voiding dysfunction in a rabbit survival model of pelvic floor dystonia. Korean J. Urol. 2015, 56, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.K.; Chen, J.J.; Chung, C.L.; Cheng, C.L.; Wang, C.C. An implantable bi-directional wireless transmission system for transcutaneous biological signal recording. Physiol. Meas. 2005, 26, 83–97. [Google Scholar] [CrossRef]
- Kerrebroeck, E.V.E.; Koldewijn, E.; Wijkstra, H.; Debruyne, F. Intradural sacral rhizotomies and implantation of an anterior sacral root stimulator in the treatment of neurogenic bladder dysfunction after spinal cord injury. World J. Urol. 1991, 9, 126–132. [Google Scholar] [CrossRef]
- McGee, M.J.; Amundsen, C.L.; Grill, W.M. Electrical stimulation for the treatment of lower urinary tract dysfunction after spinal cord injury. J. Spinal Cord Med. 2015, 38, 135–146. [Google Scholar] [CrossRef]
- Middleton, J.W.; Keast, J.R. Artificial autonomic reflexes: Using functional electrical stimulation to mimic bladder reflexes after injury or disease. Auton. Neurosci. 2004, 113, 3–15. [Google Scholar] [CrossRef]
- Tai, C.; Chen, M.; Shen, B.; Wang, J.; Liu, H.; Roppolo, J.R.; de Groat, W.C. Plasticity of urinary bladder reflexes evoked by stimulation of pudendal afferent nerves after chronic spinal cord injury in cats. Exp. Neurol. 2011, 228, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.M.; Feber, K.M.; Bennett, R.C. Sacral versus pudendal nerve stimulation for voiding dysfunction: A prospective, single-blinded, randomized, crossover trial. Neurourol. Urodyn. 2005, 24, 643–647. [Google Scholar] [CrossRef]
- Vodušek, D.; Plevnik, S.; Vrtačnik, P.; Janež, J. Detrusor inhibition on selective pudendal nerve stimulation in the perineum. Neurourol. Urodyn. 1987, 6, 389–393. [Google Scholar] [CrossRef]
- Hokanson, J.A.; Langdale, C.L.; Sridhar, A.; Grill, W.M. Stimulation of the sensory pudendal nerve increases bladder capacity in the rat. Am. J. Physiol. Ren. Physiol. 2018, 314, F543–F550. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.W.; Chen, J.J.; Cheng, C.L.; Grill, W.M. Role of pudendal afferents in voiding efficiency in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R660–R672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.T.; Peng, C.W.; Chen, L.T.; Lin, W.S.; Chu, C.H.; Chen, J.J. Application of implantable wireless biomicrosystem for monitoring nerve impedance of rat after sciatic nerve injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Welschehold, S.; Schmalhausen, E.; Dodier, P.; Vulcu, S.; Oertel, J.; Wagner, W.; Tschan, C.A. First clinical results with a new telemetric intracranial pressure-monitoring system. Neurosurg 2012, 70, 44–49. [Google Scholar] [CrossRef]
Dimensions | 1.9 (L) × 1.2 (W) × 1.8 cm (H) |
Carrier frequency | 433 MHz |
Transmission distance | 2 m (max.) |
Sampling rate | 5 Hz |
Pressure range | <1~100 cmH2O |
Pressure resolution | 0.1 cmH2O |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-T.; Yang, L.-Y.; Hsu, W.-T.; Peng, C.-W. Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: A Preliminary Study. Sensors 2020, 20, 4610. https://doi.org/10.3390/s20164610
Li Y-T, Yang L-Y, Hsu W-T, Peng C-W. Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: A Preliminary Study. Sensors. 2020; 20(16):4610. https://doi.org/10.3390/s20164610
Chicago/Turabian StyleLi, Yu-Ting, Ling-Yu Yang, Wei-Ting Hsu, and Chih-Wei Peng. 2020. "Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: A Preliminary Study" Sensors 20, no. 16: 4610. https://doi.org/10.3390/s20164610
APA StyleLi, Y.-T., Yang, L.-Y., Hsu, W.-T., & Peng, C.-W. (2020). Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: A Preliminary Study. Sensors, 20(16), 4610. https://doi.org/10.3390/s20164610