Non-Enzymatic Glucose Sensing Based on Incorporation of Carbon Nanotube into Zn-Co-S Ball-in-Ball Hollow Sphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Zn-Co-S BHS/CNTs
2.3. Apparatus
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atlas, I.D. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- MoHa, W. Taiwan Health and Welfare Report; Ministry of Health and Welfare: Taipei, Taiwan, 2018. [Google Scholar]
- Ozougwu, J.; Obimba, K.; Belonwu, C.; Unakalamba, C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 2013, 4, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, B.G.; Rashwan, F.A.; Foster, C.W.; Banks, C.E.; Khairy, M. Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid. RSC Adv. 2016, 6, 14474–14482. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Cao, X.; Qu, F.; Asiri, A.M.; Sun, X. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sens. Actuators B Chem. 2018, 255, 1254–1261. [Google Scholar] [CrossRef]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 2013, 3, 3487. [Google Scholar] [CrossRef]
- Toghill, K.E.; Compton, R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 2010, 5, 1246–1301. [Google Scholar]
- Rassaei, L.; Marken, F. Pulse-Voltammetric Glucose Detection at Gold Junction Electrodes. Anal. Chem. 2010, 82, 7063–7067. [Google Scholar] [CrossRef]
- Soomro, R.; Akyuz, O.P.; Ozturk, R.; Ibupoto, Z.H. Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sens. Actuators B: Chem. 2016, 233, 230–236. [Google Scholar] [CrossRef]
- Tan, C.K.; Loh, K.P.; John, T.T.L. Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest. Anal. 2008, 133, 448. [Google Scholar] [CrossRef]
- Mallesha, M.; Manjunatha, R.; Suresh, G.S.; Melo, J.S.; D’Souza, S.F.; Venkatesha, T.V. Direct electrochemical non-enzymatic assay of glucose using functionalized graphene. J. Solid State Electrochem. 2012, 16, 2675–2681. [Google Scholar] [CrossRef]
- Kailasa, S.; Geeta, B.; Jayarambabu, N.; Reddy, R.K.K.; Sharma, S.; Rao, K.V. Conductive Polyaniline Nanosheets (CPANINS) for a non-enzymatic glucose sensor. Mater. Lett. 2019, 245, 118–121. [Google Scholar] [CrossRef]
- Çiftçi, H.; Tamer, U.; Teker, M.S.; Pekmez, N.Ö. An enzyme free potentiometric detection of glucose based on a conducting polymer poly (3-aminophenyl boronic acid-co-3-octylthiophene). Electrochimica Acta 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Lee, K.K.; Loh, P.Y.; Sow, C.-H.; Chin, W.S. CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 2012, 20, 128–132. [Google Scholar] [CrossRef]
- Toghill, K.; Xiao, L.; Phillips, M.; Compton, R.G. The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sens. Actuators B Chem. 2010, 147, 642–652. [Google Scholar] [CrossRef]
- Naik, K.K.; Rout, C.S.; Kumar, S. Electrodeposited spinel NiCo2O4 nanosheet arrays for glucose sensing application. RSC Adv. 2015, 5, 74585–74591. [Google Scholar] [CrossRef]
- Mahmoudian, M.R.; Basirun, W.; Woi, P.M.; Sookhakian, M.; Yousefi, R.; Ghadimi, H.; Alias, Y. Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection. Mater. Sci. Eng. C 2016, 59, 500–508. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Pei, L.; Dong, C.; Shi, J.; Xu, Y. High-performance supercapacitors and non-enzymatic electrochemical glucose sensor based on tremella-like NiS/CoS/NiCo2S4 hierarchical structure. Inorg. Chem. Commun. 2019, 110, 107581. [Google Scholar] [CrossRef]
- Liu, S.; Zen, W.; Li, Y. Synthesis of ZnCo2O4 microrods grown on nickel foam for non-enzymatic glucose sensing. Mater. Lett. 2020, 259, 126820. [Google Scholar] [CrossRef]
- Sun, P.; Li, N.; Wang, C.; Yin, J.; Zhao, G.; Hou, P.; Xu, X. Nickel-cobalt based aqueous flexible solid state supercapacitors with high energy density by controllable surface modification. J. Power Sources 2019, 427, 56–61. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Q.; Soyekwo, F.; Lin, C.; Lv, R.; Qu, Y.; Chen, M.; Zhu, A.M.; Liu, Q. Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochim. Acta 2017, 237, 94–101. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, C.; Geng, F.; Zhuo, S.; Zhang, B. Nanoporous Hollow Transition Metal Chalcogenide Nanosheets Synthesized via the Anion-Exchange Reaction of Metal Hydroxides with Chalcogenide Ions. ACS Nano 2014, 8, 10909–10919. [Google Scholar] [CrossRef]
- Chen, D.; Wang, H.; Yang, M. A novel ball-in-ball hollow NiCo 2 S 4 sphere based sensitive and selective nonenzymatic glucose sensor. Anal. Methods 2017, 9, 4718–4725. [Google Scholar] [CrossRef]
- Li, C.; Balamurugan, J.; Kim, N.H.; Lee, J.H. Hierarchical Zn-Co-S Nanowires as Advanced Electrodes for All Solid State Asymmetric Supercapacitors. Adv. Energy Mater. 2017, 8, 1702014. [Google Scholar] [CrossRef]
- Deng, Q.; Tian, Z.; Wang, X.; Yang, Z.; Wu, Y. Zn–Co Sulfide Microflowers Anchored on Three-Dimensional Graphene: A High-Capacitance and Long-Cycle-Life Electrode for Asymmetric Supercapacitors. Chem. A Eur. J. 2019, 26, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, M.; Wu, R. Strongly coupling of Co9S8/Zn-Co-S heterostructures rooted in carbon nanocages towards efficient oxygen evolution reaction. J. Catal. 2018, 361, 322–330. [Google Scholar] [CrossRef]
- Li, S.; Zhao, S.; Xing, R.; Kumbhar, V.; Lee, K.; Zhou, Y.; Kazuya, N.; Fujishima, A.; Liu, S. Zn-Co-S solloidal nanocrystal clusters as efficient and durable bifunctional electrocatalysts for full water splitting. ChemNanoMat. 2019, 5, 761–765. [Google Scholar] [CrossRef]
- Wang, H.; Chena, Z.; Liu, Y.; Xu, H.; Cao, L.; Qing, H.; Wu, R. Hierarchically porous-structured ZnxCo1-x S@C–CNT nanocomposites with high-rate cycling performance for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 23221–23227. [Google Scholar] [CrossRef]
- Wu, X.; Han, X.; Ma, X.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W. Morphology-Controllable Synthesis of Zn–Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc–Air Batteries and Water Electrolysis. ACS Appl. Mater. Interfaces 2017, 9, 12574–12583. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Zhang, L.; Chen, G. Fabrication of carbon nanotube-nickel nanoparticle hybrid paste electrodes for electrochemical sensing of carbohydrates. Sens. Actuators B Chem. 2014, 192, 459–466. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Peng, X. Highly enhanced capacitance of CuO nanosheets by formation of CuO/SWCNT networks through electrostatic interaction. Electrochim. Acta 2013, 104, 289–294. [Google Scholar] [CrossRef]
- Jan, S.; Nurgul, S.; Shi, X.; Xia, H.; Pang, H. Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochim. Acta 2014, 149, 86–93. [Google Scholar] [CrossRef]
- Shen, L.; Yu, L.; Bin Wu, H.; Yu, X.-Y.; Zhang, X.; Lou, X.W. (David) Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fu, Q.; Lei, S.; Lai, L.; Xiong, J.; Bian, Q.; Xiao, Y.; Cheng, B. Preparation of quinary CuNiZn2−InS4 nanocrystals with wurtzite structure and tunable band gap. J. Alloy. Compd. 2020, 820, 153436. [Google Scholar] [CrossRef]
- Xia, W.; Zou, R.; An, L.; Xia, D.; Guo, S. A metal-organic framework route to in situ encapsulation of Co@Co3O4@Ccore@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, Q.; Zhong, G.; Fu, Y.; Ma, X. Novel NiCo2S4/graphene composites synthesized via a one-step in-situ hydrothermal route for energy storage. J. Alloys Compd. 2017, 704, 70–78. [Google Scholar] [CrossRef]
- Babu, K.J.; Kumar, T.R.; Yoo, D.J.; Phang, S.-M.; Kumar, G.G.; Siew-Moi, P. Electrodeposited Nickel Cobalt Sulfide Flowerlike Architectures on Disposable Cellulose Filter Paper for Enzyme-Free Glucose Sensor Applications. ACS Sustain. Chem. Eng. 2018, 6, 16982–16989. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Yang, J.; Liu, G.; Li, J.; Guo, L.; Chen, S.; Guo, Q. NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 2018, 258, 920–928. [Google Scholar] [CrossRef]
- Yang, J.; Cho, M.; Lee, Y. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens. Bioelectron. 2016, 75, 15–22. [Google Scholar] [CrossRef]
- Xue, B.; Li, K.; Feng, L.; Lu, J.; Zhang, L. Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim. Acta 2017, 239, 36–44. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, C.; Gao, Z.; Zhang, L. Preparation of NiCo2O4 and NiCo2O4 micro-onions for electrochemical sensing of glucose. Appl. Phys. A 2019, 125, 61. [Google Scholar] [CrossRef]
- Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Highly sensitive and selective non enzymatic electrochemical glucose sensors based on Graphene Oxide-Molecular Imprinted Polymer. Mater. Sci. Eng. C 2017, 78, 124–129. [Google Scholar] [CrossRef]
- Li, M.; Bo, X.; Mu, Z.; Zhang, Y.; Guo, L. Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens. Actuators B Chem. 2014, 192, 261–268. [Google Scholar] [CrossRef]
Type of Materials | Linear Range | Sensitivity (μA mM−1 cm−2) | Detection Limit | Reference |
---|---|---|---|---|
Zn-Co-S BHS/CNTs | 5~10 μM | 2734.4 | 2.98 μM | This work |
NiCo2S4/Ni/cellulose filter paper | 0.5 μM~6 mM | 283 | 50 nM | [37] |
NiCo2O4/carbon nanofiber | 5 μM~19.175 mM | 1947.2 | 1.5 μM | [38] |
NiCo2S4 | 5 μM~0.1 mM 0.25~2 mM | 858.57 332.84 | 2 μM | [23] |
NiCo2O4 | 0.3 μM~1 mM | 1685.1 | 0.16 μM | [39] |
Co3O4/ NiCo2O4/graphene | 0.01~3.52 mM | 304 | 0.384 μM | [40] |
NiCo2S4 | 0.2~2.4 mM | 1890 | 2.23 μM | [41] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-W.; Su, C.-W.; Tian, J.-H.; Tsai, Y.-C. Non-Enzymatic Glucose Sensing Based on Incorporation of Carbon Nanotube into Zn-Co-S Ball-in-Ball Hollow Sphere. Sensors 2020, 20, 4340. https://doi.org/10.3390/s20154340
Chang H-W, Su C-W, Tian J-H, Tsai Y-C. Non-Enzymatic Glucose Sensing Based on Incorporation of Carbon Nanotube into Zn-Co-S Ball-in-Ball Hollow Sphere. Sensors. 2020; 20(15):4340. https://doi.org/10.3390/s20154340
Chicago/Turabian StyleChang, Han-Wei, Chia-Wei Su, Jia-Hao Tian, and Yu-Chen Tsai. 2020. "Non-Enzymatic Glucose Sensing Based on Incorporation of Carbon Nanotube into Zn-Co-S Ball-in-Ball Hollow Sphere" Sensors 20, no. 15: 4340. https://doi.org/10.3390/s20154340