A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM
Abstract
:1. Introduction
2. Theoretical Background
2.1. HI Construct
2.2. Gaussian Process Latency Variable Model
2.3. LSTM Theory
2.4. Architecture of the Proposed Network
3. The Proposed Framework
4. Case Verification
4.1. Data Description
4.2. Evaluation Indexes
4.3. Health Stage Division Analysis
4.4. RUL Prediction
4.5. Comparison with Other Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reniers, J.M.; Mulder, G.; Ober-Blobaum, S.; Howey, D.A. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling. J. Power Sources 2018, 379, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Sohaib, M.; Kim, C.H.; Kim, J.M. A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors 2017, 17, 2876. [Google Scholar] [CrossRef] [Green Version]
- Aouaouda, S.; Chadli, M. Robust fault tolerant controller design for Takagi-Sugeno systems under input saturation. Int. J. Syst. Sci. 2019, 50, 1163–1178. [Google Scholar] [CrossRef]
- Bhardwaj, U.; Teixeira, A.P.; Soares, C.G. Reliability prediction of an offshore wind turbine gearbox. Renew. Energy 2019, 141, 693–706. [Google Scholar] [CrossRef]
- Liao, L.; Kottig, F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 2014, 63, 191–207. [Google Scholar] [CrossRef]
- Zhao, B.F.; Xie, L.Y.; Bai, X.; Ren, J.G.; Li, H.Y.; Zhang, S.J. A multi-axial low-cycle fatigue life prediction model considering effects of additional hardening. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1488–1503. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Proc. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Gontarz, S.; Lin, J.; Radkowski, S.; Dybala, J. A model-based method for remaining useful life prediction of machinery. IEEE Trans. Reliab. 2016, 65, 1314–1326. [Google Scholar] [CrossRef]
- Wertz, J.; Shen, M.H.; Scott-Emuakpor, O.; George, T.; Cross, C. An energy-based torsional-shear fatigue lifing method. Exp. Mech. 2012, 52, 705–715. [Google Scholar] [CrossRef]
- El-Tawil, K.; Jaoude, A.A. Stochastic and nonlinear-based prognostic model. Syst. Sci. Control Eng. 2013, 1, 66–81. [Google Scholar] [CrossRef] [Green Version]
- Pu, W.; Zhu, D.; Wang, J.; Wang, Q.J. Rolling-sliding contact fatigue of surfaces with sinusoidal roughness. Int. J. Fatigue 2016, 90, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, R.X.; Yuan, Z.; Fan, Z.; Zhang, L. A joint particle filter and expectation maximization approach to machine condition prognosis. J. Intell. Manuf. 2016, 1–7. [Google Scholar] [CrossRef]
- Cubillo, A.; Perinpanayagam, S.; Esperon-Miguez, M. A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery. Adv. Mech. Eng. 2016, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Chadli, M.; Davoodi, M.; Meskin, N. Distributed state estimation, fault detection and isolation filter design for heterogeneous multi-agent linear parameter-varying systems. IET Control Theory Appl. 2017, 11, 254–262. [Google Scholar] [CrossRef]
- Qian, Y.; Yan, R.; Gao, R.X. A multi-time scale approach to remaining useful life prediction in rolling bearing. Mech. Syst. Signal Process. 2017, 83, 549–567. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Peng, G.; Xie, C.; Zhang, W.; Li, C.; Liu, S. ACDIN: Bridging the gap between artificial and real bearing damages for bearing fault diagnosis. Neurocomputing 2018, 294, 61–71. [Google Scholar] [CrossRef]
- Chadli, A.; Chadli, M.; Ding, S.X.; Braiek, N. Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications. Automatica 2018, 29, 42–54. [Google Scholar]
- Zhu, Z.; Peng, G.; Chen, Y.; Gao, H. A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis. Neurocomputing 2019, 323, 62–75. [Google Scholar] [CrossRef]
- Hu, Y.; Baraldi, P.; Di Maio, F.; Zio, E. Online performance assessment method for a model-based prognostic approach. IEEE Trans. Reliab. 2016, 65, 718–735. [Google Scholar] [CrossRef] [Green Version]
- Javed, K.; Gouriveau, R.; Zerhouni, N.; Nectoux, P. Enabling health monitoring approach based on vibration data for accurate prognostics. IEEE Trans. Ind. Electron. 2015, 62, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Song, P.; Yang, C.; Hao, C.; Peng, W. Prognostics and health management of bearings based on logarithmic linear recursive least-squares and recursive maximum likelihood estimation. IEEE Trans. Ind. Electron. 2018, 62, 1549–1558. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Yan, R.; Gao, R.X. Long short-term memory for machine remaining life prediction. J. Manuf. Syst. 2018, 48, 78–86. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Wang, S.; Zhou, B.; Cheng, C. A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method. Measurement 2019, 146, 279–288. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Yan, T.; Li, N.; Guo, L. Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery. Neurocomputing 2020, 379, 117–129. [Google Scholar] [CrossRef]
- Chen, J.; Jing, H.; Chang, Y.; Liu, Q. Gate recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process. Reliab. Eng. Syst. Saf. 2019, 185, 372–382. [Google Scholar] [CrossRef]
- Laha, S.K. Enhancement of fault diagnosis of rolling element bearing using maximum kurtosis fast nonlocal means denoising. Measurement 2017, 100, 157–163. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, J.; Markert, R.; Liang, M. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mech. Sys. Signal Proc. 2016, 66, 679–698. [Google Scholar] [CrossRef]
- Nema, S.; Sahar, H. Data dimensional reduction and principal components analysis. Procedia Comput. Sci. 2019, 163, 292–299. [Google Scholar]
- Lawrence, N. Probabilistic Non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 2005, 6, 1783–1816. [Google Scholar]
- Li, P.; Chen, S. A review on Gaussian process latent variable models. CAAI Trans. Intell. Technol. 2016, 1, 366–376. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Zou, J.; Deng, C. Multi-kernel Gaussian process latent variable regression model for high-dimensional sequential data modeling. Neurocomputing 2019, 133, 422–432. [Google Scholar] [CrossRef]
- Lei, J.; Liu, C.; Jiang, D. Fault diagnosis of wind turbine based on Long Short-term memory networks. Renew. Energy 2019, 133, 422–432. [Google Scholar] [CrossRef]
- Cabrera, D.; Guamán, A.; Zhang, S.; Cerradab, M.; Sánchezb, R.; Cevallosc, J.; Long, J.; Li, C. Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor. Neurocomputing 2020, 380, 51–66. [Google Scholar] [CrossRef]
- Hu, M.; Wang, H.; Wang, X.; Yang, J.; Wang, R. Video facial emotion recognition based on local enhanced motion history image and CNN-CTSLSTM networks. J. Vis. Commun. Image Represent. 2019, 59, 176–185. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Zhu, Y.; Jin, L.; Luo, C. Adaptive embedding gate for attention-based scene text recognition. Neurocomputing 2020, 381, 261–271. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Trifa, A.; Sbai, A.H.; Chaari, W.L. Enhancing assessment of personalized multi-agent system through convlstm. Procedia Comput. Sci. 2017, 112, 249–259. [Google Scholar] [CrossRef]
- Zhi, Z.; Alexander, Y.S.; Qian, Y.; Qi, O. A deep learning approach to anomaly detection in geological carbon sequestration sites using pressure measurements. J. Hydrol. 2019, 573, 885–894. [Google Scholar]
- Wang, J.; Li, S.; An, Z.; Jiang, X.; Qian, W.; Ji, S. Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines. Neurocomputing 2019, 329, 53–65. [Google Scholar] [CrossRef]
- Jaouher, B.A.; Brigitte, C.; Lotfi, S.; Simon, M.; Farhat, F. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mech. Syst. Signal Proc. 2015, 56, 150–172. [Google Scholar]
Optimizer | MAE | RMSE | R-Square | MAPE | Training Time(s) |
---|---|---|---|---|---|
Adam | 0.999 | 1.257 | 19.07 | ||
RmsProp | −2.336 | 289.63 | 16.86 | ||
Adagrad | 0.9187 | 118.4 | 16.88 | ||
SGD | −2.336 | 944.71 | 17.15 |
Method | Inspection Time | Actual RUL | Estimated RUL | Prediction Error |
---|---|---|---|---|
GRU | 540 | 444 | 448.2 | −0.009 |
704 | 280 | 283.1 | −0.011 | |
982 | 2 | 3.788 | −0.894 | |
LSTM | 540 | 444 | 462.6 | −0.004 |
704 | 280 | 289.3 | −0.033 | |
982 | 2 | 4.117 | −1.058 | |
BPNN | 540 | 444 | 472.5 | −0.064 |
704 | 280 | 329.1 | −0.175 | |
982 | 2 | 8.335 | −3.167 | |
The proposed method | 540 | 444 | 446.0 | 0.004 |
704 | 280 | 280.8 | −0.0028 | |
982 | 2 | 1.553 | 0.2235 |
Method | Start Forecast time | MAE | RMSE | R-Square | MAPE |
---|---|---|---|---|---|
GRU | 535 | 6.866 | 7.335 | 0.965 | 40.19 |
705 | 14.89 | 17.10 | 0.954 | 58.51 | |
850 | 20.68 | 25.28 | 0.969 | 58.22 | |
LSTM | 535 | 13.88 | 17.68 | 0.982 | 44.76 |
705 | 15.86 | 18.22 | 0.9487 | 62.79 | |
850 | 15.24 | 16.16 | 0.832 | 87.23 | |
BPNN | 535 | 47.54 | 49.27 | 0.862 | 89.78 |
705 | 149.9 | 151.7 | −2.550 | 389.6 | |
850 | 106.2 | 106.7 | −6.285 | 471.1 | |
The proposed method | 535 | 0.9161 | 1.153 | 0.999 | inf |
705 | 0.726 | 0.766 | 0.999 | inf | |
850 | 1.958 | 2.204 | 0.997 | inf |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Li, H.; Ou, J.; Zhang, Y.; Zhang, M. A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM. Sensors 2020, 20, 1864. https://doi.org/10.3390/s20071864
Huang G, Li H, Ou J, Zhang Y, Zhang M. A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM. Sensors. 2020; 20(7):1864. https://doi.org/10.3390/s20071864
Chicago/Turabian StyleHuang, Gangjin, Hongkun Li, Jiayu Ou, Yuanliang Zhang, and Mingliang Zhang. 2020. "A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM" Sensors 20, no. 7: 1864. https://doi.org/10.3390/s20071864