Measuring the Water Content in Wood Using Step-Heating Thermography and Speckle Patterns-Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
- -
- 10 visible images without any thermal excitation at work, (100s)
- -
- 60 images with the laser activated, (600s)
- -
- 50 images with the laser activated during heating-up phase, (500s)
- -
- 70 images with the laser activated during cooling down phase (700s), and
- -
- 130 thermograms (10 as background (100s), 50 during the heating-up phase (500s), and 70 during the cooling down phase (700s)).
3. Results and Discussion
3.1. Thermography Method
3.2. Speckle Pattern Method
- The Fast Fourier Transform (FFT) was applied to each pixel of the sequence individually,
- The FFT spectrum for each pixel was averaged with all pixels resulting in the PSM spectrum of the specklegram sequence.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madruga, F.J.; Lombillo, I.; Elices, J.; Conde, O.; Liaño, C.; Villegas, L.M.; Higuera, J.M.L. La termografía infrarroja aplicada a la rehabilitación del patrimonio: Experiencias prácticas en el Seminario Mayor de Comillas. In Proceedings of the 12º Congreso Español de Ensayos No destructivos, Valencia, Spain, 15–17 June 2011. [Google Scholar]
- Kumar, M.; Shakher, C. Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry. Appl. Opt. 2016, 55, 960–968. [Google Scholar] [CrossRef]
- Korhonen, C.; Tobiasson, W. Locating wet cellular plastic insulation in recently constructed roofs. In Thermosense V: Thermal Infrared Sensing Diagnostics; The International Society for Optical Engineering: Detroit, MI, USA, 1983; Volume 0371, pp. 168–173. [Google Scholar]
- Tsongas, G.A.; Nelson, G.D. Field test for correlation of air leakage and high moisture content sites in tightly built walls. ASHRAE Trans. 1991, 97, 1–8. [Google Scholar]
- Wyckhuyse, A.; Maldague, X. A study of wood inspection by infrared thermography, part I: Wood pole inspection by infrared thermography. Res. Nondestruct. Eval. 2001, 13, 1–12. [Google Scholar] [CrossRef]
- Wyckhuyse, A.; Maldague, X. A study of wood inspection by infrared thermography, part II: Thermography for wood defects detection. Res. Nondestruct. Eval. 2001, 13, 13–21. [Google Scholar] [CrossRef]
- Stockton, G.R.; Tache, A. Advances in applications for aerial infrared thermography. In Thermosense XXVIII: Defense and Security Symposium; The International Society for Optical Engineering: Kissimmee, FL, USA, 2006; Volume 6205, p. 62050C. [Google Scholar]
- Hsu, D.K.; Barnard, D.J.; Kite, A.H.; Kim, K.B. NDE for water ingression in composite radomes on aircraft. In Proceedings of the AIP Conference Proceedings, Golden, CO, USA, February 2008; Volume 975, pp. 982–987, (34th Annual Review of Progress in Quantitative Nondestructive Evaluation, Golden, CO, USA, 22 July 2007). [Google Scholar]
- Kramer, A.; Nies, D.; Pulz, R.; Rehmer, B.; Stephan, I.; Maierhofer, C. Laser induced active thermography for the visualization of transport processes in building materials. In Proceedings of the NDT in Progress 2009: 5th International Workshop of NDT in Progress 2009, Czech Republic, Prague, 12–14 October 2009; Code 118825. pp. 152–161. [Google Scholar]
- Capineri, L.; Falorni, P.; Ivashov, S.; Zhuravlev, A.; Vasiliev, I.; Razevig, V.; Bechtel, T.; Stankiewicz, G. Combined holographic subsurface radar and infrared thermography for diagnosis of the conditions of historical structures and artworks. Near Surf. Geophys. 2010, 8, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Steele, P.H.; Hartley, I.; Cooper, J.; Conners, T.; King, R. The differential thermal response of knots and clear wood following rapid heating. Res. Nondestruct. Eval. 2010, 21, 30–47. [Google Scholar] [CrossRef]
- Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X. Integrated approach between pulsed thermography, near-infrared reflectography and sandwich holography for wooden panel paintings advanced monitoring. Russ. J. Nondestruct. Test. 2011, 47, 287–293. [Google Scholar] [CrossRef]
- Conde, M.J.M.; Liñán, C.R.; de Hita, P.R.; Gálvez, F.P. Infrared thermography applied to wood. Res. Nondestruct. Eval. 2012, 23, 32–45. [Google Scholar] [CrossRef]
- Morales-Conde, M.J.; Rodríguez-Liñán, C.; de Hita, R.P. Application of non-destructive techniques in the inspection of the wooden roof of historic buildings: A case study. Adv. Mater. Res. 2013, 778, 233–242, (2nd International Conference on Structural Health Assessment of Timber Structures, SHATIS 2013, Trento, Italy, 4 September 2013, Code 100398). [Google Scholar] [CrossRef]
- Sfarra, S.; Ibarra-Castanedo, C.; Ridolfi, S.; Cerichelli, G.; Ambrosini, D.; Paoletti, D.; Maldague, X. Holographic interferometry (HI), infrared vision and X-ray fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: A new integrated approach. Appl. Phys. A Mater. Sci. Process. 2014, 115, 1041–1056. [Google Scholar] [CrossRef] [Green Version]
- Liñán, C.R.; Conde, M.J.M.; de Hita, P.R.; Gálvez, F.P. Application of non-destructive techniques in the inspection of wooden structures of protected buildings: The case of nuestra señora de los dolores church (Isla Cristina, Huelva). Int. J. Archit. Herit. 2015, 9, 324–340. [Google Scholar] [CrossRef]
- Kraniotis, D.; Langouet, N.; Orskaug, T.; Nore, K.; Glasǿ, G. Moisture buffering and latent heat sorption phenomena of a wood-based insulating sandwich panel. In Proceedings of the WCTE 2016—World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016; Code 124667. pp. 22–26. [Google Scholar]
- Charisi, S.; Thiis, T.K.; Stefansson, P.; Burud, I. Prediction model of microclimatic surface conditions on building façades. Build. Environ. 2018, 128, 46–54. [Google Scholar] [CrossRef]
- Rosina, E.; Robison, E.C. Applying infrared thermography to historic wood-framed buildings in North America. APT Bull. J. Preserv. 2002, 33, 37–44. [Google Scholar] [CrossRef]
- Wang, H.; Wang, N.; He, Z.; He, Y. Phase-locked restored pseudo heat flux thermography for detecting delamination inside carbon fiber reinforced composites. IEEE Trans. Ind. Inform. 2019, 15, 2938–2946. [Google Scholar] [CrossRef]
- Yang, R.; He, Y.; Mandelis, A.; Wang, N.; Wu, X.; Huang, S. Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites. IEEE Trans. Ind. Inform. 2018, 14, 5637–5647. [Google Scholar] [CrossRef]
- Yang, R.; He, Y. Pulsed inductive thermal wave radar (PI-TWR) using cross correlation matched filtering in eddy current thermography. Infrared Phys. Technol. 2015, 71, 469–474. [Google Scholar] [CrossRef]
- Maldague, X.P.V. Theory and Practice of Infrared Technology for Nondestructive Testing; Wiley: New York, NY, USA, 2001; p. 684. [Google Scholar]
- Yang, R.; He, Y. Optically and non-optically excited thermography for composites: A review. Infrared Phys. Technol. 2016, 75, 26–50. [Google Scholar] [CrossRef]
- Sfarra, S.; Theodorakeas, P.; Černecký, J.; Pivarčiová, E.; Perilli, S.; Koui, M. Inspecting marquetries at different wavelengths: The preliminary numerical approach as aid for a wide-range of non-destructive tests. J. Nondestruct. Eval. 2017, 36, 6. [Google Scholar] [CrossRef]
- Ahi, K. Mathematical modeling of THz point spread function and simulation of THz imaging systems. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 747–754. [Google Scholar] [CrossRef]
- Ahi, K. A method and system for enhancing the resolution of terahertz imaging. Measurement 2019, 138, 614–619. [Google Scholar] [CrossRef]
- Ahi, K.; Shahbazmohamadi, S.; Asadizanjani, N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng. 2018, 104, 274–284. [Google Scholar] [CrossRef]
- Zhang, H.; Sfarra, S.; Sarasini, F.; Fiorelli, J.; Peeters, J.; Avdelidis, N.P.; Sartori, D.d.; Ibarra-Castanedo, C.; Perilli, S.; Mokhtari, Y.; et al. Impact modelling and a posteriori non-destructive evaluation of homogeneous particleboards of sugarcane bagasse. J. Nondestruct. Eval. 2018, 37, 6. [Google Scholar] [CrossRef] [Green Version]
- Arndt, R.W. Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. Infrared Phys. Technol. 2010, 53, 246–253. [Google Scholar] [CrossRef]
- Yata, S. Optimum surface tension of aqueous solutions in capillary penetration into wood. J. Japan. Wood Res. Soc. 1989, 35, 966–971. [Google Scholar]
- Comstock, G.L.; Côté, W.A. Factors affecting permeability and pit aspiration in coniferous sapwood. Wood Sci. Technol. 1968, 2, 279–291. [Google Scholar] [CrossRef]
- Ludwig, N.; Redaelli, V.; Rosina, E.; Augelli, F. Moisture detection in wood and plaster by IR thermography. Infrared Phys. Technol. 2004, 46, 161–166. [Google Scholar] [CrossRef]
- Vololonirina, O.; Coutand, M.; Perrin, B. Characterization of hygrothermal properties of wood-based products—Impact of moisture content and temperature. Constr. Build. Mater. 2014, 63, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Houngan, C.A.; Awanto, C.; Djossou, A.A.; Anjorin, M.; Vianou, A. Measurement of thermal effusivity and thermal conductivity at various water content for two tropical wood species. Procedia Eng. 2015, 127, 48–55. [Google Scholar]
- Draijer, M.; Hordebrink, E.; van Leeuwen, T.; Steenbergen, W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Laser Med. Sci. 2009, 24, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Stolyarov, A.; Sullenberger, R.; Crompton, D.; Jeys, T.; Saar, B.; Herzog, W. Photothermal speckle modulation for noncontact materials characterization. Opt. Lett. 2015, 40, 5786–5789. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics—Theory and Applications; Roberts & Company Publishers: Greenwood Village, CO, USA, 2007; p. 395. [Google Scholar]
- Garrido, I.; Lagűela, S.; Sfarra, S.; Madruga, F.J.; Arias, P. Automatic detection of moistures in different construction materials from thermographic images. J. Therm. Anal. Calorim. 2019, 138, 1649–1668. [Google Scholar] [CrossRef]
- Keunecke, D.; Novosseletz, K.; Lanvermann, C.; Mannes, D.; Niemz, P. Combination of X-ray and digital image correlation for the analysis of moisture-induced strain in wood: Opportunities and challenges. Eur. J. Wood Wood Prod. 2012, 70, 407–413. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, S.; Zhou, D.; Huang, S.; Huang, P. Shared excitation based nonlinear ultrasound and vibrothermography testing for CFRP barely visible impact damage inspection. IEEE Trans. Ind. Inform. 2018, 14, 5575–5584. [Google Scholar] [CrossRef]
- Válek, J.; Kruschwitz, S.; Wőstmann, J.; Kind, T.; Valach, J.; Kőpp, C.; Lesák, J. Nondestructive investigation of wet building material: Multimethodical approach. J. Perform. Constr. Facil. 2010, 24, 462–472. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madruga, F.J.; Sfarra, S.; Perilli, S.; Pivarčiová, E.; López-Higuera, J.M. Measuring the Water Content in Wood Using Step-Heating Thermography and Speckle Patterns-Preliminary Results. Sensors 2020, 20, 316. https://doi.org/10.3390/s20010316
Madruga FJ, Sfarra S, Perilli S, Pivarčiová E, López-Higuera JM. Measuring the Water Content in Wood Using Step-Heating Thermography and Speckle Patterns-Preliminary Results. Sensors. 2020; 20(1):316. https://doi.org/10.3390/s20010316
Chicago/Turabian StyleMadruga, Francisco J., Stefano Sfarra, Stefano Perilli, Elena Pivarčiová, and José M. López-Higuera. 2020. "Measuring the Water Content in Wood Using Step-Heating Thermography and Speckle Patterns-Preliminary Results" Sensors 20, no. 1: 316. https://doi.org/10.3390/s20010316
APA StyleMadruga, F. J., Sfarra, S., Perilli, S., Pivarčiová, E., & López-Higuera, J. M. (2020). Measuring the Water Content in Wood Using Step-Heating Thermography and Speckle Patterns-Preliminary Results. Sensors, 20(1), 316. https://doi.org/10.3390/s20010316