Polymeric Transducers: An Inkjet Printed B-Field Sensor with Resistive Readout Strategy
Abstract
:1. Introduction
2. The Inkjet Printed (IJP) B-Field Sensor
2.1. The Physical Model
2.2. Device Realization and Experimental Setup
3. Results
4. Conclusions
- Increase the beam width Wbeam (this is strictly correlated to the application constraints).
- Increase the coil thickness Tc (this is a matter of technology).
- Increase the beam length Lbeam (this is strictly correlated to the application constraints).
- Maximizing the coil excitation current, by taking into account the sensor geometry (this increase must always be compliant with the maximum current density “Dcurrent” compatible with the coil track geometry).
Author Contributions
Funding
Conflicts of Interest
References
- Andò, B.; Baglio, S. Inkjet-Printed Sensors: A Useful Approach for Low Cost, Rapid Prototyping. IEEE Instrum. Meas. Mag. 2011, 14, 36–40. [Google Scholar] [CrossRef]
- Venugopal, S.M.; Shringarpure, R.; Allee, D.R.; O’Rourke, S.M. Integrated a-Si:H Source Drivers for Electrophoretic Displays on Flexible Plastic Substrates. In Proceedings of the 2008 Flexible Electronics and Displays Conference and Exhibition, Phoenix, AZ, USA, 21–24 January 2008; pp. 1–5. [Google Scholar]
- Lakamraju, N.V.; Phillips, S.M.; Venugopal, S.M.; Allee, D.R. MEMS shock sensor fabricated on flexible substrate. In Proceedings of the 2009 Flexible Electronics & Displays Conference and Exhibition, Phoenix, AZ, USA, 2–5 February 2009; pp. 1–4. [Google Scholar]
- Andò, B.; Baglio, S.; Marletta, V.; Pistorio, A. A contactless inkjet printed passive touch sensor. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Montevideo, Uruguay, 12–15 May 2014; pp. 1638–1642. [Google Scholar]
- Hsieh, M.C.; Koga, H.; Nogi, M.; Suganuma, K. Highly heat-resistant bio-based nanofiber substrate for flexible electronics. In Proceedings of the IEEE CPMT Symposium Japan 2014, Kyoto, Japan, 4–6 November 2014; pp. 186–189. [Google Scholar]
- Andò, B.; Baglio, S. All-Inkjet Printed Strain Sensors. IEEE Sens. J. 2013, 13, 4874–4879. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Lombardo, C.O.; Marletta, V.; Pistorio, A. A Low-Cost Accelerometer Developed by Inkjet Printing Technology. IEEE Trans. Instrum. Meas. 2016, 65, 1242–1248. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Bulsara, A.; Emery, T.; Marletta, V.; Pistorio, A. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers. Sensors 2017, 17, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäntysalo, M.; Pekkanen, V.; Kaija, K.; Niittynen, J.; Koskinen, S.; Halonen, E.; Hämeenoja, O. Capability of inkjet technology in electronics manufacturing. In Proceedings of the Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2009; pp. 1330–1336. [Google Scholar]
- Andò, B.; Baglio, S.; Di Pasquale, G.; Pollicino, A.; D’Agata, S.; Gugliuzzo, C.; Re, G. An inkjet printed CO2 gas sensor. Procedia Eng. 2015, 120, 628–631. [Google Scholar] [CrossRef] [Green Version]
- Simard-Normandin, M.; Ho, Q.B.; Rahman, R.; Ferguson, S.; Manga, K. Resistivity-strain analysis of graphene-based ink coated fabrics for wearable electronics. In Proceedings of the 2018 Pan Pacific Microelectronics Symposium (Pan Pacific), Waimea, HI, USA, 5–8 February 2018; pp. 1–9. [Google Scholar]
- Lam, C.L.; Saleh, S.M.; Yudin, M.B.M.; Harun, F.K.; Sriprachuabwong, C.; Tuantranont, A.; Wicaksono, D.H. Graphene Ink-Coated Cotton Fabric-Based Flexible Electrode for Electrocardiography. In Proceedings of the 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 6–7 November 2017; pp. 73–75. [Google Scholar]
- Al-Halhouli, A.; Qitouqa, H.; Alashqar, A.; Abu-Khalaf, J. Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sens. Rev. 2018, 38, 438–452. [Google Scholar] [CrossRef]
- FUJIFILM Dimatix, Inc. Available online: http://www.dimatix.com (accessed on 2 December 2019).
- microdrop Technologies GmbH. Available online: http://www.microdrop.de (accessed on 2 December 2019).
- Yang, L.; Rida, A.; Wu, T.; Basat, S.; Tentzeris, M.M. Integration of sensors and inkjet-printed RFID tags on paper-based substrates for UHF “cognitive intelligence” applications. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Honolulu, HI, USA, 10–15 June 2007; pp. 1193–1196. [Google Scholar]
- Kim, S.; Vyas, R.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Inkjet-printed RF energy harvesting and wireless power trasmission devices on paper substrate. In Proceedings of the 43rd European Microwave Conference (EuMC), Nuremberg, Germany, 6–10 October 2013; pp. 983–986. [Google Scholar]
- Todaro, M.T.; Sileo, L.; De Vittorio, M. Magnetic Field Sensors Based on Microelectromechanical Systems (MEMS) Technology. In Magnetic Sensors—Principles and Applications; Kuang, K., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0232-8. [Google Scholar]
- Berešík, R.; Puttera, J.; Kurty, J.; Jurco, J. Magnetic sensor system concept for ground vehicles detection. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 31 May–2 June 2017; pp. 710–715. [Google Scholar]
- Auster, H.U.; Glassmeier, K.H.; Magnes, W.; Aydogar, O.; Baumjohann, W.; Constantinescu, D.; Hillenmaier, O. The THEMIS fluxgate magnetometer. Space Sci. Rev. 2008, 141, 235–264. [Google Scholar] [CrossRef]
- Lei, C.; Chen, L.; Zhou, Y.; Zhou, Z. Ultra low power solenoid MEMS fluxgate sensor with amorphous alloy core. In Proceedings of the 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 1–4 November 2010; pp. 1471–1473. [Google Scholar]
- Prystopiuk, O.; Bolshakova, I.; Radishevskiy, M.; Vasiliev, O. Magnetic field sensors based on gold nanofilm, which are operable in the new generation fusion reactors environment. In Proceedings of the 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa, Ukraine, 11–12 September 2017; pp. 1–4. [Google Scholar]
- Andò, B.; Baglio, S.; Crispino, R.; Graziani, S.; Marletta, V.; Mazzaglia, A.; Torrisi, G. A Fluxgate-Based Approach for Ion Beam Current Measurement in ECRIS Beamline: Design and Preliminary Investigations. IEEE Trans. Instrum. Meas. 2019, 68, 1477–1484. [Google Scholar] [CrossRef]
- Ripka, P. Magnetic Sensors and Magnetometers; Artech House Publishers: London, UK, 2001. [Google Scholar]
- Hongoh, H.; Tsukiyama, M.; Kanda, K.; Fujita, T.; Maenaka, K. Design of the Lorentz Force Based Resonant Magnetic Sensor for SiGe MEMS on CMOS Process. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–28 June 2018; pp. 169–173. [Google Scholar] [CrossRef]
- Sonmezoglu, S.; Flader, I.B.; Chen, Y.; Shin, D.D.; Kenny, T.W.; Horsley, D.A. Dual-resonator MEMS Lorentz force magnetometer based on differential frequency modulation. In Proceedings of the 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 28–30 March 2017; pp. 160–163. [Google Scholar] [CrossRef]
- Li, M.; Rouf, V.T.; Sonmezoglu, S.; Horsley, D.A. Magnetic sensors based on micromechanical oscillators. In Proceedings of the 2014 IEEE International Frequency Control Symposium (FCS), Taipei, Taiwan, 19–22 May 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Langfelder, G.; Buffa, C.; Frangi, A.; Tocchio, A.; Lasalandra, E.; Longoni, A. Z-Axis Magnetometers for MEMS Inertial Measurement Units Using an Industrial Process. IEEE Trans. Ind. Electron. 2013, 60, 3983–3990. [Google Scholar] [CrossRef]
- Herrera-May, A.L.; García-Ramírez, P.J.; Aguilera-Cortés, L.A.; Figueras, E.; Martínez-Castillo, J.; Manjarrez, E.; Sauceda, A.; García-González, L.; Juárez-Aguirre, R. Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution. Sens. Actuators A Phys. 2011, 165, 399–409. [Google Scholar] [CrossRef]
- Andò, B.; Marletta, V. An All-InkJet Printed Bending Actuator with Embedded Sensing Feature and an Electromagnetic Driving Mechanism. Actuators 2016, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Andò, B.; Baglio, S.; Marletta, V.; Pistorio, A. All Inkjet-Printed B Field Sensor. Proceedings 2017, 1, 621. [Google Scholar] [CrossRef] [Green Version]
- Suryana, A.; Muntini, M.S. Strain gage for mass sensor using cantilever beam. In Proceedings of the 2017 International Conference on Computing, Engineering, and Design (ICCED), Kuala Lumpur, Malaysia, 23–25 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Bu, L.; Bahnemann, M.; Möckel, S.; Keutel, T.; Kanoun, O. Application of multi-walled carbon nanotube film strain gauge on metallic surface. In Proceedings of the International Multi-Conference on Systems, Signals & Devices, Chemnitz, Germany, 20–23 March 2012; pp. 1–5. [Google Scholar] [CrossRef]
Physical Quantity | Value | Description |
---|---|---|
N | Number of coils turns | |
Wcoil | Coil width | |
Tc | 200 nm | Coil thickness (technology dependent) |
S | 300 µm | The lowest possible spatial resolution (technology dependent) |
Din | 2.0 mm | Internal coil Diameter (technology dependent) |
Dout | External coil Diameter (application dependent) | |
Dguard | 2.0 mm | External safety ring (technology dependent) |
Li | Turn side | |
Ltot | Total turn sides | |
P | Total coil length (taken considering the external coil diameter) | |
Wbeam | Beam width (application dependent) | |
µ0 | 4π·10−7 H/m | Magnetic permeability in vacuum |
I | Current flowing in the beam | |
Imax | 130 mA | The highest current supported by the beam (application and technology dependent) |
Dcurrent | Maximum current density | |
External magnetic field | ||
E | 3.1·109 N/m2 | PET Young’s modulus |
Lbeam | Beam length | |
Tbeam | Beam thickness | |
Fm | Lorentz force |
Physical Quantity | Value |
---|---|
Wbeam | 2 cm |
Tc | 200 nm |
S | 300 µm |
Din | 2 mm |
Dout | 2 cm |
B | 1–46 mT with 5 mT step |
Wcoil | 0.9–7 mm with 0.1 mm step |
Physical Quantity | Value |
---|---|
Coil resistance | 25.6 Ω |
Coil inductance | 84.6 nH |
Strain gauge resistance | 123.5 Ω |
Gauge factor | 1.9 |
Resonant frequency | 9.1 Hz |
Constant | 0.04 A | 0.06 A | 0.08 A | 0.1 A | Mean Value | STD |
---|---|---|---|---|---|---|
K1 | 0.910 | 0.883 | 0.818 | 0.730 | 0.835 | 0.079 |
K2 | −0.117 × 10−4 | −0.164 × 10−4 | −0.196 × 10−4 | −0.196 × 10−4 | −0.169 × 10−4 | 3.73 × 10−6 |
Quantity | 0.04 A | 0.06 A | 0.08 A | 0.1 A |
---|---|---|---|---|
Responsivity (µε/T) | 1800 | 2500 | 3100 | 3700 |
Resolution (mT) | 0.864 | 0.644 | 0.486 | 0.458 |
Accuracy (µε) | ±3.45 | ±2.82 | ±1.90 | ±1.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andò, B.; Baglio, S.; Crispino, R.; Marletta, V. Polymeric Transducers: An Inkjet Printed B-Field Sensor with Resistive Readout Strategy. Sensors 2019, 19, 5318. https://doi.org/10.3390/s19235318
Andò B, Baglio S, Crispino R, Marletta V. Polymeric Transducers: An Inkjet Printed B-Field Sensor with Resistive Readout Strategy. Sensors. 2019; 19(23):5318. https://doi.org/10.3390/s19235318
Chicago/Turabian StyleAndò, Bruno, Salvatore Baglio, Ruben Crispino, and Vincenzo Marletta. 2019. "Polymeric Transducers: An Inkjet Printed B-Field Sensor with Resistive Readout Strategy" Sensors 19, no. 23: 5318. https://doi.org/10.3390/s19235318