An Onsite Calibration Method for MEMS-IMU in Building Mapping Fields
Abstract
:1. Introduction
2. Development of Error Calibration Model
3. Error Calibration of MEMS-IMU System
- Start measuring the data after positioning the MEMS-IMU system on the floor; in order to avoid the singularity of the P matrix in the solution process, the data acquisition time should be extended to 3–5 s, to ensure the number of collected datums is greater than the unknown parameters in the equations.
- Rotate the calibrated side by 180° horizontally, as seen in Figure 6. Stay still for 3–5 s to measure the data;
- The finally measured data can be obtained by averaging the data obtained during the previous two steps;
- Repeat the calibration for the other five sides following the above three steps.
4. Experimental Validation
4.1. Hardware
4.2. The Software
4.3. Experimental Results
5. Practical Implementation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaewunruen, S.; Lian, Q. Digital twin aided sustainability-based lifecycle management for railway turnout systems. J. Clean. Prod. 2019, 228, 1537–1551. [Google Scholar]
- Li, J.; Li, N.; Peng, J.; Cui, H.; Wu, Z. A review of currently applied building information modeling tools of constructions in China. J. Clean. Prod. 2018, 201, 358–368. [Google Scholar] [CrossRef]
- Aziz, N.D.; Nawawi, A.H.; Ariff, N.R.M. Building Information Modelling (BIM) in Facilities Management: Opportunities to be Considered by Facility Managers. Procedia-Soc. Behav. Sci. 2016, 234, 353–362. [Google Scholar] [Green Version]
- Macher, H.; Landes, T.; Grussenmeyer, P. From point clouds to building information models: 3D semi-automatic reconstruction of indoors of existing buildings. Appl. Sci. 2017, 7, 1030. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweeden, 16–21 May 2016; pp. 1271–1278. [Google Scholar]
- Smith, R.; Self, M.; Cheeseman, P. Estimating Uncertain Spatial Relationships in Robotics. Mach. Intell. Pattern Recognit. 2013, 5, 435–461. [Google Scholar]
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM: A factoredsolution to the simultaneous localization and mapping problem. In Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, AB, Canada, 28 July–1 August 2002; pp. 593–598. [Google Scholar]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef]
- Qureshi, U.; Golnaraghi, F. An algorithm for the in-field calibration of a MEMS IMU. IEEE Sens. J. 2017, 17, 7479–7486. [Google Scholar] [CrossRef]
- Zaitsev, D.; Egor, E.; Shabalina, A. High resolution miniature MET sensors for healthcare and sport applications. In Proceedings of the 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018; pp. 287–292. [Google Scholar]
- Xia, M.; Xiu, C.; Yang, D.; Wang, L. Performance Enhancement of Pedestrian Navigation Systems Based on Low-Cost Foot-Mounted MEMS-IMU/Ultrasonic Sensor. Sensors 2019, 19, 364. [Google Scholar] [Green Version]
- Chiang, K.W.; Tsai, M.L.; Naser, E.S.; Habib, A.; Chu, C.H. New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads. Sensors 2015, 15, 6560–6585. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Feng, C.; Liang, X.; Qin, H.; Li, H.; Shi, L. A guided vehicle under fire conditions based on a modified ultrasonic obstacle avoidance technology. Sensors 2018, 18, 4366. [Google Scholar]
- Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. A Standard Testing and Calibration Procedure for Low Cost MEMS Inertial Sensors and Units. J. Navig. 2008, 61, 323–336. [Google Scholar] [CrossRef]
- Thereforeng, R.; Chen, X.; Huang, H. Nonstationary dynamic stochastic error analysis of fiber optic gyroscope based on optimized Allan variance. Sens. Actuators A Phys. 2018, 276, 26–33. [Google Scholar]
- Li, R.; Liu, J.; Zhang, L.; Hang, Y. LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments. In Proceedings of the 2014 DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 16–17 September 2014; pp. 1–15. [Google Scholar]
- Shi, Z.; Yang, J.; Yue, P.; Cheng, Z. A new calibration and compensation method for installation errors of accelerometers in Gyroscope Free Strap-down Inertial Navigation System. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 924–929. [Google Scholar]
- El-Sheimy, N.; Hou, H.; Niu, X. Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Trans. Instrum. Meas. 2008, 57, 140–149. [Google Scholar] [CrossRef]
- Poddar, S.; Kumar, V.; Kumar, A. A comprehensive overview of inertial sensor calibration techniques. J. Dyn. Syst. Meas. Control. 2017, 139, 011006. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, B.; Wang, L.; Xing, H.; Zhang, R. A novel tri-axial MEMS gyroscope calibration method over a full temperature range. Sensors 2018, 18, 3004. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Chen, Z.; Yang, H.; Wang, C.; Lin, Z.; Guo, M. Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base. Sensors 2018, 18, 1178. [Google Scholar] [CrossRef]
- Syed, Z.F.; Aggarwal, P.; Goodall, C.; Niu, X.; El-Sheimy, N. A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol. 2007, 18, 1897–1907. [Google Scholar] [CrossRef]
- Hwangbo, M.; Kim, J.S.; Kanade, T. IMU Self-Calibration Using Factorization. IEEE Trans. Robot. 2013, 29, 493–507. [Google Scholar] [CrossRef]
- Xiao, Y.; Ruan, X.; Chai, J.; Zhang, X.; Zhu, X. Online IMU Self-Calibration for Visual-Inertial Systems. Sensors 2019, 19, 1624. [Google Scholar] [Green Version]
- Zaitsev, D.L.; Agafonov, V.M.; Evseev, I.A. Study of Systems Error Compensation Methods Based on Molecular-Electronic Transducers of Motion Parameters. J. Sens. 2018, 2018, 6261384. [Google Scholar] [CrossRef]
- Tedaldi, D.; Pretto, A.; Menegatti, E. A robust and easy to implement method for IMU calibration without external equipments. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3042–3049. [Google Scholar]
- Yan, G.; Li, S.; Qin, Y. Inertial Instrument Testing and Data Analysis; National Defense Industry Publishing: Beijing, China, 2012. [Google Scholar]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.F. About Motion Measurement in Sports Based on Gyroscopes and Accelerometers—An Engineering Point of View. Gyroscopy Navig. 2018, 9, 1–18. [Google Scholar] [CrossRef]
X-Axis | Y-Axis | Z-Axis |
---|---|---|
abxx = aixxcosαxzcosαxy | abxy = −aiycosαyxsinαyz | abxz = aizsinαiz |
abyx = aixsinαxz | abyy = aiycosαyxcosαyz | abyz = −aizcosαzycosαzx |
abzx = −aixcosαxzsinαxy | abzy = aiycosαyz | abzz = aizcosαzycosαzx |
Z-Axis Upwards | Z-Axis Downwards | Y-Axis Upwards | Y-Axis Downwards | X-Axis Upwards | X-Axis Downwards |
---|---|---|---|---|---|
Parameter | Averaged Calibration Values (× 10−2) | Standard Deviation (× 10−2) |
---|---|---|
1.45 | 0.21 | |
−5.59 | 0.01 | |
−4.06 | 1.96 | |
1.98 | 0.04 | |
1.98 | 0.03 | |
0.90 | 0.06 | |
98.52 | 0.10 | |
99.05 | 0.16 | |
99.17 | 0.11 | |
0.37 | 0.05 | |
2.54 | 0.53 | |
57.25 | 4.21 |
Yaw | before Calibration | Error | after Calibration | Error |
---|---|---|---|---|
30° | 27.6° | 2.4° | 29.6° | 0.4° |
45° | 47.2° | −2.2° | 45.9° | −0.9° |
60° | 61.8° | −1.8° | 59.2° | 0.8° |
90° | 88.0° | 2.0° | 90.5° | −0.5° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Niu, Y.; Feng, C.; Liu, H.; Zhang, D.; Qin, H. An Onsite Calibration Method for MEMS-IMU in Building Mapping Fields. Sensors 2019, 19, 4150. https://doi.org/10.3390/s19194150
Li S, Niu Y, Feng C, Liu H, Zhang D, Qin H. An Onsite Calibration Method for MEMS-IMU in Building Mapping Fields. Sensors. 2019; 19(19):4150. https://doi.org/10.3390/s19194150
Chicago/Turabian StyleLi, Sen, Yunchen Niu, Chunyong Feng, Haiqiang Liu, Dan Zhang, and Hengjie Qin. 2019. "An Onsite Calibration Method for MEMS-IMU in Building Mapping Fields" Sensors 19, no. 19: 4150. https://doi.org/10.3390/s19194150
APA StyleLi, S., Niu, Y., Feng, C., Liu, H., Zhang, D., & Qin, H. (2019). An Onsite Calibration Method for MEMS-IMU in Building Mapping Fields. Sensors, 19(19), 4150. https://doi.org/10.3390/s19194150