Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants, Experimental Setup, and Protocol
2.2. Data Pre-Processing
2.3. Synchronization and Time Events
2.4. Reference Frames
- The global reference frame (GRF), where the x-axis was aligned with the longitudinal axes of the treadmill, forward oriented; the z-axis was vertical, downward oriented; and the y-axis resulted from the right-hand rule as a vector directed toward the right side of the treadmill. This was the camera-based reference frame and the 3D trajectories of all markers referred to this reference frame.
- A local reference frame for each body segment, set according to the axes of the related MIMU. Noticeably, the output of each MIMU was the quaternion-based orientation expressed from its navigation reference frame to the local reference frame (i.e., the global reference frame of the MIMU used axes aligned with magnetic North, gravity, and the axis orthogonal to these two in accordance with the right-hand rule); it should be noted that the navigation reference frame was defined during the MIMU calibration procedure, and due to non-idealities, each MIMU produced a different navigation reference frame
2.5. Margin of Stability
2.6. MOS Estimation Using Camera-Based Data
- The BOS boundaries along the AP direction coincided with the x component of the first metatarsal head of the leading foot, while the BOS boundary along the ML direction coincided with the y component of the fifth metatarsal head of the leading foot.
- The BCOM position along both axes (i.e., AP and ML) coincided with the x and y components of the marker on the SACRUM, respectively.
- The was computed as the first time derivative (backward difference method) of the BCOM trajectory in both frontal and sagittal planes that were smoothed using a moving average filter across a time window of 20 samples to remove high-frequency noise.
2.7. MOS Estimation Using MIMU Data
- The ankle joint coincided with the midpoint between the medial and lateral malleolus.
- The knee joint coincided with the midpoint between the medial and lateral epicondyles of the femur.
- The hip joint coincided with the position of the acetabular cup, assessed as described elsewhere [45].
2.8. Outcome Measures and Statistical Analysis
3. Results
3.1. Kinematic Chain Reconstruction
3.2. Margin of Stability
4. Discussion
4.1. Accuracy of Joint Position Estimation
4.2. Accuracy of Estimation of MOS
4.3. Limits
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bagalà, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 2012, 7, e37062. [Google Scholar] [CrossRef] [PubMed]
- Alekna, V.; Stukas, R.; Tamulaityte-Morozoviene, I.; Šurkiene, G.; Tamulaitiene, M. Self-reported consequences and healthcare costs of falls among elderly women. Medicina 2015, 51, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical Costs of Fatal and Nonfatal Falls in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruijn, S.M.; Meijer, O.G.; Beek, P.J.; Van Dieen, J.H. Assessing the stability of human locomotion: A review of current measures. J. R. Soc. Interface 2013, 10, 20120999. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Pai, Y.C.; Patton, J. Center of mass velocity-position predictions for balance control. J. Biomech. 1997, 30, 347–354. [Google Scholar] [CrossRef]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef]
- Hak, L.; Houdijk, H.; Beek, P.J.; Van Dieë, J.H. Steps to take to enhance gait stability: The effect of stride frequency, stride length, and walking speed on local dynamic stability and margins of stability. PLoS ONE 2013, 8, e82842. [Google Scholar] [CrossRef]
- McAndrew Young, P.M.; Wilken, J.M.; Dingwell, J.B. Dynamic margins of stability during human walking in destabilizing environments. J. Biomech. 2012, 45, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Xu, R.; Zhao, M.; Guo, Y.; Jiang, S.; He, F.; Ming, D. Dynamic stability and spatiotemporal parameters during turning in healthy young adults. Biomed. Eng. Online 2018, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Martelli, D.; Aprigliano, F.; Tropea, P.; Pasquini, G.; Micera, S.; Monaco, V. Stability against backward balance loss: Age-related modifications following slip-like perturbations of multiple amplitudes. Gait Posture 2017, 53, 207–214. [Google Scholar] [CrossRef]
- Monaco, V.; Tropea, P.; Aprigliano, F.; Martelli, D.; Parri, A.; Cortese, M.; Molino-Lova, R.; Vitiello, N.; Micera, S. An ecologically-controlled exoskeleton can improve balance recovery after slippage. Sci. Rep. 2017, 7, 46721. [Google Scholar] [CrossRef]
- Aprigliano, F.; Martelli, D.; Tropea, P.; Micera, S.; Monaco, V. Effects of slipping-like perturbation intensity on the dynamical stability. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August 2015; pp. 5295–5298. [Google Scholar]
- Hak, L.; Houdijk, H.; Van Der Wurff, P.; Prins, M.R.; Beek, P.J.; Van Dieën, J.H. Stride frequency and length adjustment in post-stroke individuals: Influence on the margins of stability. J. Rehabil. Med. 2015, 47, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Davis, W.E.; Burton, A.W. Ecological task analysis: Translating movement behavior theory into practice. Adapt. Phys. Act. Q. 1991, 8, 154–177. [Google Scholar] [CrossRef]
- Mohamed Refai, M.I.; van Beijnum, B.J.F.; Buurke, J.H.; Veltink, P.H. Gait and Dynamic Balance Sensing Using Wearable Foot Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 27, 218–227. [Google Scholar] [CrossRef]
- Van Meulen, F.B.; Weenk, D.; Buurke, J.H.; Van Beijnum, B.J.F.; Veltink, P.H. Ambulatory assessment of walking balance after stroke using instrumented shoes. J. Neuroeng. Rehabil. 2016, 13, 48. [Google Scholar] [CrossRef]
- Arvin, M.; Mazaheri, M.; Hoozemans, M.J.M.; Pijnappels, M.; Burger, B.J.; Verschueren, S.M.P.; van Dieën, J.H. Effects of narrow base gait on mediolateral balance control in young and older adults. J. Biomech. 2016, 49, 1264–1267. [Google Scholar] [CrossRef] [Green Version]
- Schepers, H.M.; Van Asseldonk, E.H.F.; Buurke, J.H.; Veltink, P.H. Ambulatory estimation of center of mass displacement during walking. IEEE Trans. Biomed. Eng. 2009, 56, 1189–1195. [Google Scholar] [CrossRef]
- Guo, L.; Xiong, S. Accuracy of base of support using an inertial sensor based motion capture system. Sensors 2017, 17, 2091. [Google Scholar] [CrossRef]
- Fasel, B.; Spörri, J.; Schütz, P.; Lorenzetti, S.; Aminian, K. An inertial sensor-based method for estimating the athlete’s relative joint center positions and center of mass kinematics in alpine ski racing. Front. Physiol. 2017, 8, 850. [Google Scholar] [CrossRef]
- Dinu, D.; Fayolas, M.; Jacquet, M.; Leguy, E.; Slavinski, J.; Houel, N. Accuracy of Postural Human-motion Tracking Using Miniature Inertial Sensors. Procedia Eng. 2016, 147, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Destelle, F.; Unzueta, L.; Monaghan, D.S.; Linaza, M.T.; Moran, K.; O’Connor, N.E. 3D human gait reconstruction and monitoring using body-worn inertial sensors and kinematic modeling. IEEE Sens. J. 2016, 16, 8823–8831. [Google Scholar] [CrossRef]
- Ben Mansour, K.; Rezzoug, N.; Gorce, P. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Gait Posture 2015, 42, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, L.V.; Rebula, J.R.; Kuo, A.D.; Adamczyk, P.G. Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking. Med. Eng. Phys. 2015, 37, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial measurement units for clinical movement analysis: Reliability and concurrent validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef] [PubMed]
- Narváez, F.; Árbito, F.; Proaño, R. A Quaternion-Based Method to IMU-to-Body Alignment for Gait Analysis. Lect. Notes Computer Sci. 2018, 10917, 217–231. [Google Scholar]
- Nüesch, C.; Roos, E.; Pagenstert, G.; Mündermann, A. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system. J. Biomech. 2017, 57, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Ghobadi, M.; Estahani, E.T. A robust automatic gait monitoring approach using a single IMU for home-based applications. J. Mech. Med. Biol. 2017, 17, 1750077. [Google Scholar] [CrossRef]
- Mariani, B.; Rochat, S.; Büla, C.J.; Aminian, K. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. IEEE Trans. Biomed. Eng. 2012, 59, 3162–3168. [Google Scholar] [CrossRef]
- Yun, X.; Calusdian, J.; Bachmann, E.R.; McGhee, R.B. Estimation of human foot motion during normal walking using inertial and magnetic sensor measurements. IEEE Trans. Instrum. Meas. 2012, 61, 2059–2072. [Google Scholar] [CrossRef]
- Steins, D.; Sheret, I.; Dawes, H.; Esser, P.; Collett, J. A smart device inertial-sensing method for gait analysis. J. Biomech. 2014, 47, 3780–3785. [Google Scholar] [CrossRef] [PubMed]
- Floor-Westerdijk, M.J.; Schepers, H.M.; Veltink, P.H.; Van Asseldonk, E.H.F.; Buurke, J.H. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking. IEEE Trans. Biomed. Eng. 2012, 59, 2080–2084. [Google Scholar] [CrossRef] [PubMed]
- Esser, P.; Dawes, H.; Collett, J.; Howells, K. IMU: Inertial sensing of vertical CoM movement. J. Biomech. 2009, 42, 1578–1581. [Google Scholar] [CrossRef] [PubMed]
- InvenSense MPU-9250 Product Specification. Available online: https://media.digikey.com/pdf/Data Sheets/TDK PDFs/MPU-9250_Rev_1.1.pdf. (accessed on 1 September 2019).
- AsahiKASEI Asahi AK8963 Product Specification. Available online: https://www.akm.com/akm/en/file/datasheet/AK8963C.pdf. (accessed on 1 September 2019).
- Monaco, V.; Rinaldi, L.A.; Macrì, G.; Micera, S. During walking elders increase efforts at proximal joints and keep low kinetics at the ankle. Clin. Biomech. 2009, 24, 493–498. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 21.
- Rinaldi, L.A.; Monaco, V. Spatio-temporal parameters and intralimb coordination patterns describing hemiparetic locomotion at controlled speed. J. Neuroeng. Rehabil. 2013, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Samir, A. Sensor Fusion Kalman Filters; LAP: Saarbrucken, Germany, 2016. [Google Scholar]
- Sabatini, A.M.; Martelloni, C.; Scapellato, S.; Cavallo, F. Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 2005, 52, 486–494. [Google Scholar] [CrossRef]
- Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity, test-retest reliability and long-term stability of magnetometer free inertial sensor based 3D joint kinematics. Sensors 2018, 18, 1980. [Google Scholar] [CrossRef]
- Fasel, B.; Spörri, J.; Schütz, P.; Lorenzetti, S.; Aminian, K. Validation of functional calibration and strap-down joint drift correction for computing 3D joint angles of knee, hip, and trunk in alpine skiing. PLoS ONE 2017, 12, e0181446. [Google Scholar] [CrossRef]
- Fraysse, F.; Thewlis, D. Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm. J. Biomech. 2014, 14, 3488–3493. [Google Scholar] [CrossRef]
- Monaco, V.; Micera, S. Age-related neuromuscular adaptation does not affect the mechanical efficiency of lower limbs during walking. Gait Posture 2012, 36, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Aprigliano, F.; Martelli, D.; Micera, S.; Monaco, V. Intersegmental coordination elicited by unexpected multidirectional slipping-like perturbations resembles that adopted during steady locomotion. J. Neurophysiol. 2015, 115, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Aprigliano, F.; Martelli, D.; Tropea, P.; Pasquini, G.; Micera, S.; Monaco, V. Ageing does not affect the intralimb coordination elicited by slip-like perturbation of different intensities. J. Neurophysiol. 2017, 118, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Courtine, G.; Schieppati, M. Tuning of a Basic Coordination Pattern Constructs Straight-Ahead and Curved Walking in Humans. J. Neurophysiol. 2004, 91, 1524–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor control programs and walking. Neuroscientist 2006, 12, 339–348. [Google Scholar] [CrossRef] [PubMed]
Methods | Setup | MOS Directions | Camera Validation | Aim |
---|---|---|---|---|
Refai et al. [16] | Instrumented shoes; IMU on each forefoot; ultrasound system | Frontal | No | Compare two wearable methods; validate the less bulky |
Van Meulen et al. [17] | Instrumented shoes; ultrasound system | Frontal | No | Investigate MOS correlation with clinical stability scale |
Arvin et al. [18] | Instrumented shoes; IMU on pelvis | Sagittal | No | Investigate effect of BOS width on MOS |
Presented method | Seven MIMUs on feet, shanks, thighs, and pelvis | Frontal and Sagittal | Yes | Reconstruct MOS using MIMUs and validate the method using a camera-based system |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guaitolini, M.; Aprigliano, F.; Mannini, A.; Micera, S.; Monaco, V.; Sabatini, A.M. Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network. Sensors 2019, 19, 4117. https://doi.org/10.3390/s19194117
Guaitolini M, Aprigliano F, Mannini A, Micera S, Monaco V, Sabatini AM. Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network. Sensors. 2019; 19(19):4117. https://doi.org/10.3390/s19194117
Chicago/Turabian StyleGuaitolini, Michelangelo, Federica Aprigliano, Andrea Mannini, Silvestro Micera, Vito Monaco, and Angelo Maria Sabatini. 2019. "Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network" Sensors 19, no. 19: 4117. https://doi.org/10.3390/s19194117
APA StyleGuaitolini, M., Aprigliano, F., Mannini, A., Micera, S., Monaco, V., & Sabatini, A. M. (2019). Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network. Sensors, 19(19), 4117. https://doi.org/10.3390/s19194117