Constant-Modulus-Waveform Design for Multiple-Target Detection in Colocated MIMO Radar
Abstract
:1. Introduction
2. Signal Model
3. Simultaneous Multiple Transmit-Beam Design
3.1. SNR Analysis
3.2. Transmit-Beam Design Based on Robust Energy Allocation
Algorithm 1 Binary-search algorithm for |
Initialization: Find arbitrary two values and that satisfy and . Let , . Output: while do if then . else . end if end while |
Algorithm 2 Binary-search algorithm for |
Initialization: Given . Find arbitrary two value and , which satisfy and . And Let , . Output: while do if then . else . end if end while |
3.3. Transmit-Beam Design Based on Minimum-Energy Allocation
3.4. Constant-Waveform Design
- Step 0: Obtain desired matrix in the previous optimization problem. Element in was set to , where were independent random variables uniformly distributed in .
- Step 1: Obtain according to Equation (33).
- Step 2: Obtain and according to Equations (34) and (35).
- Iteration: Repeat Steps 1 and 2 until prespecified stop criterion is satisfied, e.g., , where denotes the orthogonal waveform matrix at ith iteration, and is a predefined threshold.
4. Simulation and Discussion
4.1. Transmit-Beam Design Based on Robust Energy Allocation
4.2. Transmit-Beam Design Based on Minimum-Energy Allocation
4.3. Beam-Pattern Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MIMO | Multiple-input multiple-output |
RCS | Radar Cross-Section |
DOF | Degrees of Freedom |
CA | Cyclic algorithm |
PAR | Peak to Average power Ratio |
SNR | Signal-to-Noise Ratio |
BCRB | Bayesian Cramér-Rao bound |
RMB | Reuven–Messer bound |
SDP | Semidefinite Programming |
OW | Orthogonal waveforms |
References
- Li, J.; Stoica, P. MIMO Radar Signal Processing; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO Radar with Widely Separated Antennas. IEEE Signal Process. Mag. 2007, 25, 116–129. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P. MIMO radar with colocated antennas. IEEE Signal Process. Mag. 2007, 24, 106–114. [Google Scholar] [CrossRef]
- Fuhrmann, D.R.; Antonio, G.S. Transmit beamforming for MIMO radar systems using signal correlation. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1–16. [Google Scholar] [CrossRef]
- Fuhrmann, D.R.; Antonio, G.S. Transmit beamforming forMIMO radar systems using partial signal correlation. In Proceedings of the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; Volume 1, pp. 295–299. [Google Scholar]
- Stoica, P.; Li, J.; Zhu, X.; Guo, B. Waveform Synthesis for Diversity-Based Transmit Beampattern Design. IEEE Trans. Signal Process. 2008, 56, 2593–2598. [Google Scholar] [CrossRef]
- Stoica, P.; Li, J.; Yao, X. On Probing Signal Design For MIMO Radar. IEEE Trans. Signal Process. 2007, 55, 4151–4161. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Stoica, P.; Forsythe, K.W.; Bliss, D.W. Range Compression and Waveform Optimization for MIMO Radar: A Cramér–Rao Bound Based Study. IEEE Trans. Signal Process. 2008, 56, 218–232. [Google Scholar]
- Hassanien, A.; Vorobyov, S.A. Transmit Energy Focusing for DOA Estimation in MIMO Radar with Colocated Antennas. IEEE Trans. Signal Process. 2011, 59, 2669–2682. [Google Scholar] [CrossRef]
- Hua, G.; Abeysekera, S.S. Colocated MIMO radar transmit beamforming using orthogonal waveforms. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 2453–2456. [Google Scholar]
- Xu, H.; Gao, W. MISL-based colocated MIMO radar waveform coefficients matrix design for beampattern matching. In Proceedings of the International Conference on Wireless Communications & Signal Processing, Yangzhou, China, 13–15 October 2016; pp. 1–5. [Google Scholar]
- Xu, J.; Liao, G.; Zhu, S.; Huang, L.; So, H.C. Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Trans. Signal Process. 2015, 63, 3396–3410. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhang, Y.; Ji, H.; Huang, L. An Adaptive Range-Angle-Doppler Processing Approach for FDA-MIMO Radar Using Three-Dimensional Localization. IEEE J. Sel. Top. Signal Process. 2017, 11, 309–320. [Google Scholar] [CrossRef]
- Yan, J.; Bo, J.; Liu, H.; Bo, C.; Zheng, B. Prior Knowledge-Based Simultaneous Multibeam Power Allocation Algorithm for Cognitive Multiple Targets Tracking in Clutter. IEEE Trans. Signal Process. 2014, 63, 512–527. [Google Scholar] [CrossRef]
- Yan, J.; Liu, H.; Bo, J.; Bo, C.; Zheng, L.; Zheng, B. Simultaneous Multibeam Resource Allocation Scheme for Multiple Target Tracking. IEEE Trans. Signal Process. 2015, 63, 3110–3122. [Google Scholar] [CrossRef]
- Yan, J.; Liu, H.; Bo, J.; Zheng, B. Power Allocation Algorithm for Target Tracking in Unmodulated Continuous Wave Radar Network. IEEE Sens. J. 2014, 15, 1098–1108. [Google Scholar]
- Yan, J.; Liu, H.; Pu, W.; Zhou, S.; Zheng, B. Joint Beam Selection and Power Allocation for Multiple Target Tracking in Netted Colocated MIMO Radar System. IEEE Trans. Signal Process. 2016, 64, 6417–6427. [Google Scholar] [CrossRef]
- Yan, J.; Pu, W.; Liu, H.; Jiu, B.; Bao, Z. Robust Chance Constrained Power Allocation Scheme for Multiple Target Localization in Colocated MIMO Radar System. IEEE Trans. Signal Process. 2018, 66, 3946–3957. [Google Scholar] [CrossRef]
- Huleihel, W.; Tabrikian, J.; Shavit, R. Optimal Adaptive Waveform Design for Cognitive MIMO Radar. IEEE Trans. Signal Process. 2013, 61, 5075–5089. [Google Scholar] [CrossRef]
- Sharaga, N.; Tabrikian, J.; Messer, H. Optimal Cognitive Beamforming for Target Tracking in MIMO Radar/Sonar. IEEE J. Sel. Top. Signal Process. 2015, 9, 1440–1450. [Google Scholar] [CrossRef]
- Herbert, S.; Hopgood, J.R.; Mulgrew, B. MMSE Adaptive Waveform Design for Active Sensing with Applications to MIMO Radar. IEEE J. Sel. Top. Signal Process. 2018, 66, 1361–1373. [Google Scholar] [CrossRef]
- Gorji, A.A.; Tharmarasa, R.; Blair, W.D.; Kirubarajan, T. Multiple Unresolved Target Localization and Tracking using Colocated MIMO Radars. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2498–2517. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Liao, Q.; Tang, J. Robust waveform design for multi-target detection in cognitive MIMO radar. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 116–120. [Google Scholar]
- Li, J.; Stoica, P. The Phased Array Is the Maximum SNR Active Array [Lecture Notes]. IEEE Signal Process. Mag. 2010, 27, 143–144. [Google Scholar] [CrossRef]
- Richards, M.A. Fundamentals of Radar Signal Processing; Tata McGraw-Hill Education: New York, NY, USA, 2005. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Chen, B.; Yang, M. Constant-Modulus-Waveform Design for Multiple-Target Detection in Colocated MIMO Radar. Sensors 2019, 19, 4040. https://doi.org/10.3390/s19184040
Liu B, Chen B, Yang M. Constant-Modulus-Waveform Design for Multiple-Target Detection in Colocated MIMO Radar. Sensors. 2019; 19(18):4040. https://doi.org/10.3390/s19184040
Chicago/Turabian StyleLiu, Bingfan, Baixiao Chen, and Minglei Yang. 2019. "Constant-Modulus-Waveform Design for Multiple-Target Detection in Colocated MIMO Radar" Sensors 19, no. 18: 4040. https://doi.org/10.3390/s19184040