An Aeromagnetic Compensation Method Based on a Multimodel for Mitigating Multicollinearity
Abstract
:1. Introduction
2. Analysis and Method
2.1. T–L Model
2.2. Analysis of Multicollinearity
2.3. The Multimodel Method
3. Experiment
3.1. Implementation
3.2. Comparison with Conventional Methods
3.3. Compensations in Level Flights
3.4. Compensation in Non-Standard Headings
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hood, P. History of aeromagnetic surveying in Canada. Lead. Edge 2007, 26, 1384–1392. [Google Scholar] [CrossRef]
- Nabighian, M.N.; Grauch, V.; Hansen, R.; LaFehr, T.; Li, Y.; Peirce, J.; Phillips, J.; Ruder, M. The historical development of the magnetic method in exploration. Geophysics 2005, 70, 33ND–61ND. [Google Scholar] [CrossRef]
- Noriega, G.; Marszalkowski, A. Adaptive techniques and other recent developments in aeromagnetic compensation. First Break 2017, 35, 31–38. [Google Scholar]
- Chen, L.; Wu, P.; Zhu, W.; Feng, Y.; Fang, G. A novel strategy for improving the aeromagnetic compensation performance of helicopters. Sensors 2018, 18, 1846. [Google Scholar] [CrossRef] [PubMed]
- Tolles, W.; Lawson, J. Magnetic Compensation of MAD Equipped Aircraft; Airborne Instruments Lab. Inc.: Mineola, NY, USA, 1950; p. 201. [Google Scholar]
- Leliak, P. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft. IRE Trans. Aerosp. Navig. Electron. 1961, 3, 95–105. [Google Scholar] [CrossRef]
- Leach, B.W. Aeromagnetic compensation as a linear regression problem. In Information Linkage between Applied Mathematics and Industry; Elsevier: Amsterdam, The Netherlands, 1980; pp. 139–161. [Google Scholar]
- Hardwick, C. Important design considerations for inboard airborne magnetic gradiometers. Geophysics 1984, 49, 2004–2018. [Google Scholar] [CrossRef]
- Williams, P.M. Aeromagnetic compensation using neural networks. Neural Comput. Appl. 1993, 1, 207–214. [Google Scholar] [CrossRef]
- Dou, Z.; Han, Q.; Niu, X.; Peng, X.; Guo, H. An aeromagnetic compensation coefficient-estimating method robust to geomagnetic gradient. IEEE Geosci. Remote. Sens. Lett. 2016, 13, 611–615. [Google Scholar] [CrossRef]
- Bickel, S.H. Small signal compensation of magnetic fields resulting from aircraft maneuvers. IEEE Trans. Aerosp. Electron. Syst. 1979, 4, 518–525. [Google Scholar] [CrossRef]
- Inaba, T.; Shima, A.; Konishi, M.; Yanagisawa, H.; Takada, J.i.; Araki, K. Magnetic noise compensation using FIR model parameter estimation method. In Electronics and Communications in Japan (Part III: Fundamental Electronic Science); Wiley Online Library: Hoboken, NJ, USA, 2002; Volume 85, pp. 1–11. [Google Scholar]
- Dou, Z.; Ren, K.; Han, Q.; Niu, X. A Novel Real-Time Aeromagnetic Compensation Method Based on RLSQ. In Proceedings of the 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 27–29 August 2014; pp. 243–246. [Google Scholar]
- Gu, B.; Li, Q.; Liu, H. Aeromagnetic compensation based on truncated singular value decomposition with an improved parameter-choice algorithm. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Volume 3, pp. 1545–1551. [Google Scholar]
- Zhang, D.; Huang, D.; Lu, J.; Zhu, B. Aeromagnetic compensation with partial least square regression. ASEG Ext. Abstr. 2016, 2016, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Han, Q.; Niu, X.; Peng, X.; Guo, H. An adaptive filter for aeromagnetic compensation based on wavelet multiresolution analysis. IEEE Geosci. Remote. Sens. Lett. 2016, 13, 1069–1073. [Google Scholar] [CrossRef]
- Han, Q.; Dou, Z.; Tong, X.; Peng, X.; Guo, H. A modified Tolles–Lawson model robust to the errors of the three-axis strapdown magnetometer. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 334–338. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; Volume 1. [Google Scholar]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics Identifying Influential Data and Sources of Collinearity; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1980. [Google Scholar]
- Keyser, A.R.; Rice, J.A.; Schearer, L.D. A metastable helium magnetometer for observing small geomagnetic fluctuations. J. Geophys. Res. 1961, 66, 4163–4169. [Google Scholar] [CrossRef]
- McGregor, D.D. High-sensitivity helium resonance magnetometers. Rev. Sci. Instrum. 1987, 58, 1067–1076. [Google Scholar] [CrossRef]
Variable | Expression | Pitch | Roll | Yaw |
---|---|---|---|---|
0 | ||||
0 | ||||
0 | ||||
0 | ||||
0 | ||||
0 | 0 | |||
0 | 0 | |||
0 | ||||
0 | ||||
0 | ||||
0 | ||||
0 |
Variable | Expression | Pitch | Roll | Yaw |
---|---|---|---|---|
0 | ||||
0 | ||||
0 | ||||
0 | ||||
0 | ||||
0 | ||||
0 | ||||
0 | 0 | |||
0 | ||||
0 | 0 | |||
0 | ||||
0 |
Variables | VIFs | ||||
---|---|---|---|---|---|
FVS | EVS-1 | EVS-2 | EVS-3 | EVS-4 | |
9730.40 | 6640.77 | 5119.77 | — | — | |
159,672.01 | — | — | — | — | |
112,862.35 | 39,651.18 | 23.55 | 23.54 | 23.32 | |
16,679.02 | 9875.18 | 21.07 | 20.81 | 20.78 | |
1907.04 | 1312.74 | 1311.42 | 512.57 | 511.42 | |
4727.15 | 3772.57 | 2369.45 | 509.71 | 507.73 | |
36,281.72 | 35,521.73 | — | — | — | |
26,334.11 | 526.00 | 20.67 | 20.67 | 20.49 | |
626.94 | 626.33 | 623.44 | 619.19 | 15.07 | |
1.60 | 1.60 | 1.60 | 1.46 | 1.43 | |
2.51 | 2.49 | 2.47 | 2.46 | 2.35 | |
488.07 | 488.07 | 487.06 | 482.17 | 443.24 | |
1946.64 | 1945.84 | 1932.61 | 1913.33 | — | |
1169.43 | 1168.18 | 1162.95 | 1154.38 | 25.10 | |
483.08 | 483.08 | 481.86 | 477.28 | 436.85 | |
510.18 | 510.11 | 504.93 | 499.07 | 10.90 |
Variables | VIFs | ||||
---|---|---|---|---|---|
FVS | EVS-1 | EVS-2 | EVS-3 | EVS-4 | |
397,320.73 | — | — | — | — | |
27,811.26 | 27,266.38 | – | — | — | |
(400,873.05) | 2809.42 | 2763.78 | 3.38 | 3.38 | |
35,405.72 | 3384.67 | 3336.12 | — | — | |
3626.27 | 3534.16 | 37.41 | 37.39 | 37.29 | |
51,546.73 | 49.68 | 49.51 | 3.37 | 3.36 | |
138.65 | 3.30 | 3.03 | 2.61 | 1.79 | |
11,488.87 | 11,299.04 | 39.48 | 39.41 | 39.09 | |
328.74 | 324.86 | 222.25 | 219.56 | — | |
71.27 | 67.20 | 66.60 | 66.60 | 66.16 | |
104.81 | 104.04 | 75.54 | 73.93 | 4.41 | |
22.37 | 22.35 | 19.98 | 18.54 | 18.47 | |
1.60 | 1.60 | 1.49 | 1.45 | 1.39 | |
19.68 | 19.67 | 16.97 | 15.74 | 15.72 | |
98.89 | 97.12 | 61.96 | 61.87 | 5.20 | |
69.11 | 65.23 | 64.58 | 64.36 | 63.81 |
Maneuver | North | East | South | West | Sum |
---|---|---|---|---|---|
Roll | 1.19|1.39|1.40|0.72 | 5.11|1.33|1.41|0.61 | 2.01|1.29|1.26|0.34 | 3.88|2.00|1.89|0.86 | 12.19|6.00|5.97|2.53 |
Pitch | 2.71|0.66|0.62|0.47 | 0.89|0.34|0.32|0.36 | 3.04|0.24|0.23|0.15 | 1.83|1.86|1.85|1.74 | 8.47|3.09|3.02|2.73 |
Yaw | 1.25|0.67|0.65|0.31 | 1.84|1.03|1.06|0.42 | 1.10|0.69|0.67|0.17 | 1.82|1.11|1.07|0.88 | 6.01|3.49|3.45|1.78 |
Sum | 5.15|2.72|2.67|1.50 | 7.84|2.70|2.80|1.39 | 6.15|2.21|2.16|0.66 | 7.54|4.96|4.81|3.79 | 26.68|12.59|12.44|7.04 |
Dataset | STD (nT) | IR | ||||
---|---|---|---|---|---|---|
LS | RR | MM | LS | RR | MM | |
Line-A | 0.0223 | 0.0216 | 0.0206 | 2.2695 | 2.3452 | 2.4565 |
Line-B | 0.0579 | 0.0594 | 0.0452 | 1.8594 | 1.8124 | 2.3835 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Han, Q.; Peng, X.; Zou, P.; Wang, H.; Du, C.; Wang, H.; Tong, X.; Li, Q.; Guo, H. An Aeromagnetic Compensation Method Based on a Multimodel for Mitigating Multicollinearity. Sensors 2019, 19, 2931. https://doi.org/10.3390/s19132931
Zhao G, Han Q, Peng X, Zou P, Wang H, Du C, Wang H, Tong X, Li Q, Guo H. An Aeromagnetic Compensation Method Based on a Multimodel for Mitigating Multicollinearity. Sensors. 2019; 19(13):2931. https://doi.org/10.3390/s19132931
Chicago/Turabian StyleZhao, Guanyi, Qi Han, Xiang Peng, Pengyi Zou, Haidong Wang, Changping Du, He Wang, Xiaojun Tong, Qiong Li, and Hong Guo. 2019. "An Aeromagnetic Compensation Method Based on a Multimodel for Mitigating Multicollinearity" Sensors 19, no. 13: 2931. https://doi.org/10.3390/s19132931
APA StyleZhao, G., Han, Q., Peng, X., Zou, P., Wang, H., Du, C., Wang, H., Tong, X., Li, Q., & Guo, H. (2019). An Aeromagnetic Compensation Method Based on a Multimodel for Mitigating Multicollinearity. Sensors, 19(13), 2931. https://doi.org/10.3390/s19132931