DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System
Abstract
:1. Introduction
2. Background and Related Work
3. Problem Statement
4. Main Idea
5. DNN-Based Multiple View Learning Framework
5.1. Global Spatial View: IDW
5.2. Global Temporal View: SES
5.3. Local Spatial View: UCF
5.4. Local Temporal View: MD-CF
5.5. Semantic View: Structural Embedding
5.6. Multi-View Learning with DNN
Algorithm 1: DNN_ multi-view learning method (MVL). |
Input: Original Data Matrix ; Structure Graph ; Output: Final filling data matrix |
1. O ← Get-All-Missing-Values (); |
2. If there are successive missing readings () |
3. ← Initialization (); |
4. For each target sensor at the time slot t in O |
5. ← |
6. ← |
7. ← |
8. ← |
9. ← |
10. ← |
11. Add into |
12. Return |
6. Performance Evaluations
6.1. Datasets and Ground Truth
6.2. Data Preprocessing
6.3. Baselines
6.4. Experimental Results Analysis
6.4.1. Comparison with the Baseline Methods
6.4.2. Results of Combination Methods
6.4.3. Results of Filling Readings
6.4.4. Results of Different Parameters
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, J.; Tan, H.-W.; Wang, J.; Wang, J.-W.; Lee, S.-Y. A Novel Routing Protocol Providing Good Transmission Reliability in Underwater Sensor Networks. J. Internet Technol. 2015, 16, 171–178. [Google Scholar]
- Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting Fine-Grained Air Quality Based on Big Data. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 19–21 October 2015; pp. 2267–2276. [Google Scholar]
- Xie, K. Decentralized Context Sharing in Vehicular Delay Tolerant Networks with Compressive Sensing. In Proceedings of the 36th IEEE International Conference on Distributed Computing Systems, Nara, Japan, 27–30 June 2016; pp. 169–178. [Google Scholar]
- Su, H.-Z.; Wen, Z.-P.; Sun, X.-R.; Yan, X.-Q. Multisource Information Fusion-based Approach Diagnosing Structural Behavior of Dam Engineering. Struct. Control. Health Monit. 2018, 25, e2073. [Google Scholar] [CrossRef]
- Mao, Y.-C.; Qi, H.; Ping, P.; Li, X.-F. Contamination Event Detection with Multivariate Time-Series Data in Agricultural Water Monitoring. Sensors 2017, 17, 2806. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Wang, X.; Liu, X. Interference-Aware Cooperative Communication in Multi-radio Multi-channel Wireless Networks. IEEE Trans. Comput. 2016, 65, 1528–1542. [Google Scholar] [CrossRef]
- Saia, R.; Carta, S.; Recupero, D.R.; Fenu, G. Internet of entities (IoE): A blockchain-based distributed paradigm for data exchange between wireless-based devices. In Proceedings of the 8th International Conference on Sensor Networks, Prague, Czech Republic, 26–27 February 2019; pp. 77–84. [Google Scholar]
- Karray, F.; Jmal, M.W.; Garcia-Ortiz, A.; Abid, M.; Obeid, A.M. A comprehensive survey on wireless sensor node hardware platforms. Comput. Netw. 2018, 144, 89–110. [Google Scholar] [CrossRef]
- Pau, G.; Chaudet, C.; Zhao, D.; Collotta, M. Next generation wireless technologies for internet of things. Sensors 2018, 18, 221. [Google Scholar] [CrossRef]
- Subramaniam, S.; Palpanas, T.; Papadopoulos, D.; Kalogeraki, V.; Gunopulos, D. Online Outlier Detection in Sensor Data Using Non-Parametric Models. In Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, 12–15 September 2006; pp. 187–198. [Google Scholar]
- Zhang, M.-L.; Zhou, Z.-H. ML-KNN: A Lazy Learning Approach to Multi-Label Learning. Pattern Recognit. 2007, 40, 2038–2048. [Google Scholar] [CrossRef]
- Kong, L.; Jiang, D.; Wu, M.-Y. Optimizing the Spatio-Temporal Distribution of Cyber-Physical Systems for Environment Abstraction. In Proceedings of the IEEE 30th International Conference on Distributed Computing Systems, Genoa, Italy, 21–25 June 2010; pp. 179–188. [Google Scholar]
- Bhowmik, B.; Krishnan, M.; Hazra, B. Real-time Unified Single-and Multi-Channel Structural Damage Detection Using Recursive Singular Spectrum Analysis. Struct. Health Monit. 2019, 563, 563–589. [Google Scholar] [CrossRef]
- Candes, E.J.; Eldar, Y.C.; Strohmer, T. Phase Retrieval via Matrix Completion. SIAM Rev. 2015, 57, 225–251. [Google Scholar] [CrossRef]
- Keshavan, R.H.; Montanari, A.; Oh, S. Matrix Completion from Noisy Entries. J. Mach. Learn. Res. 2010, 99, 2057–2078. [Google Scholar]
- Kitamura, D.; Ono, N.; Sawada, H. Efficient Multi-Channel Non-Negative Matrix Factorization Exploiting Rank-1 Spatial Model. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; pp. 276–280. [Google Scholar]
- Mei, J.; Castro, Y.D.; Goude, Y.; Azais, J.-M.; Hebrail, G. Nonnegative Matrix Factorization with Side Information for Time Series Recovery and Prediction. IEEE Trans. Knowl. Data Eng. 2019, 31, 493–506. [Google Scholar] [CrossRef]
- Shi, F.; Li, Q.; Zhu, T.; Ning, H. A survey of data semantization in internet of things. Sensors 2018, 18, 313. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, L.; Hu, G.; Ye, W.; Zhang, J.; Yang, G. Data Reconstruction in Wireless Sensor Networks from Incomplete and Erroneous Observations. IEEE Access 2018, 6, 45493–45503. [Google Scholar] [CrossRef]
- Koren, Y.; Bell, R. Advances in Collaborative Filtering, Recommender Systems Handbook; Springer: Boston, MA, USA, 2015; pp. 77–118. [Google Scholar]
- Fornasier, M.; Rauhut, H.; Ward, R. Low-Rank Matrix Recovery via Iteratively Reweighted Least Squares Minimization. SIAM J. Optim. 2011, 21, 1614–1640. [Google Scholar] [CrossRef]
- Yi, X.; Zheng, Y.; Zhang, J.; Li, T. ST-MVL: Filling Missing Values in Geo-Sensory Time Series Data. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, NY, USA, 9–15 July 2016; pp. 2704–2710. [Google Scholar]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, S.; Fang, Z. Comparison of China’s Primary Energy Consumption Forecasting by Using ARIMA model and GM (1,1) Model. Energy 2016, 100, 384–390. [Google Scholar] [CrossRef]
- Ceylan, Y.; Aslan, S.; Iyigun, C.; Batmaz, I. Comparison of Missing Value Imputation Methods in Time Series: The Case of Turkish Meteorological Data. Theor. Appl. Climatol. 2013, 112, 143–167. [Google Scholar]
- Deng, D.; Shahabi, C.; Demiryurek, U.; Zhu, L.; Yu, R.; Liu, Y. Latent Space Model for Road Networks to Predict Time-varying Traffic. In Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Tong, Y.; Chen, Y.; Zhou, Z.; Chen, L.; Wang, J.; Yang, Q.; Ye, J. The Simpler the Better: A Unified Approach to Predicting Original Taxi Demands on Large-Scale Online Platforms. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017. [Google Scholar]
- Chen, F.-W.; Liu, C.-W. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting in the Middle of Taiwan. Paddy Water Environ. 2015, 10, 209–222. [Google Scholar] [CrossRef]
- Wu, T.; Li, Y. Spatial Interpolation of Temperature in the United States Using Residual Kriging. Appl. Geogr. 2013, 44, 112–120. [Google Scholar] [CrossRef]
- Ma, R.; Barzigar, N.; Roozgard, A.; Cheng, S. Decomposition Approach for Low-Rank Matrix Completion and its Applications. IEEE Trans. Signal. Process. 2014, 62, 1671–1683. [Google Scholar] [CrossRef]
- Kong, L.; Xia, M.; Liu, X.-Y.; Wu, M.-Y.; Liu, X. Data Loss and Reconstruction in Sensor Networks. In Proceedings of the IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 1654–1662. [Google Scholar]
- Gruenwald, L.; Sadik, M.S.; Shukla, R.; Yang, H. DEMS: A Data Mining Based Technique to Handle Missing Data in Mobile Sensor Network Applications. In Proceedings of the 7th International Workshop on Data Management for Sensor Networks, Singapore, 13 September 2010; pp. 26–32. [Google Scholar]
- Zhang, W.-W.; Roughan, M. Spatio-Temporal Compressive Sensing and Internet Traffic Matrices. In Proceedings of the ACM SIGCOMM Conference on Data Communication, Barcelona, Spain, 16–21 August 2009; pp. 267–278. [Google Scholar]
- Zhang, Y.; Roughan, M.; Willinger, W.; Qiu, L. Spatio-Temporal Compressive Sensing and Internet Traffic Matrices. IEEE/ACM Trans. Netw. 2012, 20, 662–676. [Google Scholar]
- Lindström, J.; Szpiro, A.A.; Sampson, P.D.; Oron, A.P.; Richards, M.; Larson, T.V.; Sheppard, L. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates. Environ. Ecol. Stat. 2014, 21, 411–433. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Liu, K.; Liu, J. Solving the Stability–Accuracy–Diversity Dilemma of Recommender Systems. Phys. A Stat. Mech. Appl. 2017, 468, 415–424. [Google Scholar] [CrossRef]
- Nie, D.-C.; An, Y.-H.; Dong, Q. Information Filtering via Balanced Diffusion on Bipartite Networks. Phys. A Stat. Mech. Appl. 2015, 421, 44–53. [Google Scholar] [CrossRef]
- Cai, H.-Y.; Zheng, V.W.; Chang, K. A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications. IEEE Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [Google Scholar] [CrossRef]
- Mao, Y.-C.; Zhong, H.; Xiao, X.; Li, X. A Segment-Based Trajectory Similarity Measure in the Urban Transportation Systems. Sensors 2017, 17, 524. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Qu, M.; Wang, M. LINE: Large-Scale Information Network Embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T. Empirical Evaluation of Rectified Activations in Convolutional Network. Comput. Sci. 2015, 1505, 00853. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Kingma, D.P.; Lei, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Missing | Dam-Deformation | |
---|---|---|
Block Missing | Spatial | 2.7% |
Temporal () | 4.6% | |
General Missing | 8.4% | |
Overall | 15.2% |
Dataset | Dam Deformation |
---|---|
Start time | 2012/01/01 |
End time | 2017/08/14 |
Test set | March, June, September, December |
Training set | others that are NOT in test set |
Method | Spatial Block Missing | Temporal Block Missing | ||||
---|---|---|---|---|---|---|
MAE | MRE | MSE | MAE | MRE | MSE | |
ARIMA | 25.34 | 0.35 | 29.11 | \ | \ | \ |
SARIMA | 21.06 | 0.32 | 27.79 | 25.42 | 0.56 | 30.24 |
Kriging | \ | \ | \ | 15.31 | 0.28 | 27.85 |
DEMS | 16.89 | 0.284 | 25.14 | 12.95 | 0.277 | 23.79 |
ST-KNN | 17.55 | 0.31 | 28.87 | 12.32 | 0.27 | 22.59 |
CF | 16.78 | 0.285 | 24.98 | 12.76 | 0.274 | 21.56 |
ST-MVL | 14.62 | 0.256 | 21.62 | 11.51 | 0.23 | 19.47 |
DNN-MVL | 13.54 | 0.19 | 19.45 | 9.75 | 0.156 | 18.38 |
Method | Spatial Block Missing | Temporal Block Missing | |||||
---|---|---|---|---|---|---|---|
MAE | MSE | MRE | MAE | MSE | MRE | ||
Global | IDW | \ | \ | \ | 12.64 | 21.12 | 0.242 |
SES | 16.31 | 23.68 | 0.32 | \ | \ | \ | |
IDW + SES | 16.31 | 23.68 | 0.32 | 12.64 | 21.12 | 0.242 | |
Local | UCF | \ | \ | \ | 12.73 | 21.34 | 0.245 |
MD-CF | 15.98 | 22.14 | 0.294 | \ | \ | \ | |
UCF + MD-CF | 15.12 | 21.92 | 0.27 | \ | \ | \ | |
ST-MVL | 14.62 | 21.62 | 0.256 | 11.51 | 19.47 | 0.21 | |
DNN-MVL | 13.54 | 19.45 | 0.19 | 9.75 | 18.38 | 0.156 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Zhang, J.; Qi, H.; Wang, L. DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System. Sensors 2019, 19, 2895. https://doi.org/10.3390/s19132895
Mao Y, Zhang J, Qi H, Wang L. DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System. Sensors. 2019; 19(13):2895. https://doi.org/10.3390/s19132895
Chicago/Turabian StyleMao, Yingchi, Jianhua Zhang, Hai Qi, and Longbao Wang. 2019. "DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System" Sensors 19, no. 13: 2895. https://doi.org/10.3390/s19132895