A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking
Abstract
:1. Introduction
2. Bayesian Estimation and Standard PF
2.1. Markov–Bayes Recursion
2.2. Sequential Importance Sampling and Resampling
3. Single-Target PF
3.1. Importance Sampling Proposal
3.2. Particle Degeneracy and Impoverishment
3.2.1. Improve Resampling Methods
3.2.2. Extend the Particle Property
3.3. Computational Efficiency
3.3.1. Reduce the State Space Dimension
3.3.2. Sped-Up Likelihood Computation
3.3.3. Adjusting the Number of Particles
3.3.4. Parallel and Distributed Computing
- Flooding: The flooding protocol provides the converging-fastest, albeit communicational costly way to spread information over the network [88]. To note, its fastest convergence to consensus does not matter the network topology, and is therefore immune to the network change.
- Averaging consensus: There is a large body of work concerning averaging consensus-based distributed filtering. The data transmitted between neighboring nodes can be posterior statistics in the form of a Gaussian component/GM [89,90], likelihood [25,91,92], particle set [93] or raw observations [88,94]; see also the surveys such as a taxonomy of distributed PFs [25] and a comparison of several belief consensus algorithms [95].
3.4. Constraint and Multimodality
3.4.1. Constrained PF
3.4.2. Multimodal PF for Maneuver Target Tracking
4. Multitarget PF
4.1. New Challenges
4.2. M2T Association-Based MTT-PF
4.3. MTT-PF Free of M2T Association
4.3.1. Extension of Conventional PF
4.3.2. Estimate Extraction for Random Set PF
- (1)
- Misdetection: In any way, if a target does not report any observation, the filter can hardly form an efficient posterior estimation for that target. A potential solution is to construct pseudo-observations [151] for misdetected targets, thus forming a pseudo-posterior estimate. However, this, if created wrongly, can easily cause another challenge: false alarm.
- (2)
- False alarm: If the clutter unfortunately falls in the region of high prior density/PHD, raising a local posterior peak, then the filter will likely form a false estimate.
5. Key Tracking Issues beyond State Estimation
5.1. Track Management
5.2. Parameter Estimation for Unknown Scenes
- (1)
- (2)
- In the case that the parameters are strongly time-variant, only a few of the latest observations can be used to estimate the parameter. Based on this line of thinking, online estimation methods for the new-born target function and its intensity magnitude are given in [165,166], respectively, in which only the newest observation data are used.
- SIR-type filters may suffer from sample impoverishment and thereby benefit from a sampling proposal that has a heavier tail, e.g., the covariance simulated for state transition noise for particle preparation is larger than that of the noise involved in the real state dynamics, which is explicitly referred to as the direct-roughening strategy [57]. This is because a comparably big transition noise used for particle propagation can spread overlapped particles for better diversity to counteract impoverishment, giving closer-to-the-true approximation of the posterior. As such, the SIR filter tends to yield a biased (larger-than-the-truth) estimate of the transition noise if it is unknown and needs to be estimated, at least in the forward-only filtering estimation [167].
- “Theoretically best achievable second order error performance, in target state estimation is independent of knowledge (or the lack of it) of the observation noise variance [168].” This is in accordance with the results in [169], which demonstrates that the noise covariances are unnecessary in estimation, as they can be integrated out. Somehow surprisingly, it was shown that the filters that do not use the true value of observation noise variance but instead estimate it online can achieve the theoretical bound, while the filter, which is using the true value of the Gaussian observation noise variance, cannot.
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Li, T.; Su, J.; Liu, W.; Corchado, J.M. Approximate Gaussian conjugacy: Parametric recursive filtering under nonlinearity, multimode, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electron. Eng. 2017, in press. [Google Scholar] [CrossRef]
- Mahler, R. Advances in Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2014. [Google Scholar]
- Ristic, B.; Beard, M.; Fantacci, C. An overview of particle methods for random finite set models. Inf. Fusion 2016, 31, 110–126. [Google Scholar] [CrossRef]
- Li, T.; Fan, H.; Sun, S. Particle filtering: Theory, approach, and application for multitarget tracking. Acta Autom. Sin. 2015, 41, 1981–2002. [Google Scholar]
- Cappé, O.; Godsill, S.J.; Moulines, E. An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 2007, 95, 899–924. [Google Scholar] [CrossRef]
- Doucet, A.; Johansen, A.M. A tutorial on particle filtering and smoothing: Fifteen years later. Handb. Nonlinear Filter. 2009, 12, 656–704. [Google Scholar]
- Gustafsson, F. Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 53–82. [Google Scholar] [CrossRef]
- Särkkä, S. Bayesian Filtering and Smoothing; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Stano, P.M.; Lendek, Z.; Babuška, R. Saturated particle filter: Almost sure convergence and improved resampling. Automatica 2013, 49, 147–159. [Google Scholar] [CrossRef]
- Patwardhan, S.C.; Narasimhan, S.; Jagadeesan, P.; Gopaluni, B.; Shah, S.L. Nonlinear Bayesian state estimation: A review of recent developments. Control Eng. Pract. 2012, 20, 933–953. [Google Scholar] [CrossRef]
- Creal, D. A survey of sequential Monte Carlo methods for economics and finance. Econom. Rev. 2012, 31, 245–296. [Google Scholar] [CrossRef]
- Lopes, H.F.; Tsay, R.S. Particle filters and Bayesian inference in financial econometrics. J. Forecast. 2011, 30, 168–209. [Google Scholar] [CrossRef]
- Van Leeuwen, P.J. Particle filtering in geophysical systems. Mon. Weather Rev. 2009, 137, 4089–4114. [Google Scholar] [CrossRef]
- Kostanjcar, Z.; Jeren, B.; Cerovec, J. Particle filters in decision making problems under uncertainty. Autom. J. Control Meas. Electr. Comput. Commun. 2009, 50, 3–4. [Google Scholar]
- Mihaylova, L.; Carmi, A.Y.; Septier, F.; Gning, A.; Pang, S.K.; Godsill, S. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking. Digit. Signal Proc. 2014, 25, 1–16. [Google Scholar] [CrossRef]
- Duník, J.; Straka, O.; Šimandl, M.; Blasch, E. Random-point-based filters: Analysis and comparison in target tracking. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1403–1421. [Google Scholar] [CrossRef]
- Li, X.R.; Jilkov, V.P. A survey of maneuvering target tracking, part VIc: Approximate nonlinear density filtering in discrete time. In Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 5–9 May 2012. [Google Scholar]
- Andrieu, C.; Doucet, A.; Singh, S.S.; Tadic, V.B. Particle methods for change detection, system identification, and control. Proc. IEEE 2004, 92, 423–438. [Google Scholar] [CrossRef]
- Johansen, A.M. Some Non-Standard Sequential Monte Carlo Methods and Their Applications. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2006. [Google Scholar]
- Kantas, N.; Doucet, A.; Singh, S.S.; Maciejowski, J.M. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. IFAC Proc. Vol. 2009, 42, 774–785. [Google Scholar] [CrossRef]
- Tulsyan, A.; Huang, B.; Gopaluni, R.B.; Forbes, J.F. On-line Bayesian parameter estimation in general non-linear state-space models: A tutorial and new results. arXiv 2013, arXiv:1307.3490. [Google Scholar]
- Gao, M.; Zhang, H. Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models. Comput. Geosci. 2012, 44, 70–77. [Google Scholar] [CrossRef]
- Li, T.; Bolić, M.; Djurić, P.M. Resampling methods for particle filtering: Classification, implementation, and strategies. IEEE Signal Process. Mag. 2015, 32, 70–86. [Google Scholar] [CrossRef]
- Li, T.; Villarrubia, G.; Sun, S.; Corchado, J.M.; Bajo, J. Resampling methods for particle filtering: Identical distribution, a new method, and comparable study. Front. Inf. Technol. Electron. Eng. 2015, 16, 969–984. [Google Scholar] [CrossRef]
- Hlinka, O.; Hlawatsch, F.; Djuric, P.M. Distributed particle filtering in agent networks: A survey, classification, and comparison. IEEE Signal Proc. Mag. 2013, 30, 61–81. [Google Scholar] [CrossRef]
- Hu, X.-L.; Schon, T.B.; Ljung, L. A general convergence result for particle filtering. IEEE Trans. Signal Proc. 2011, 59, 3424–3429. [Google Scholar] [CrossRef]
- Mbalawata, I.S.; Särkkä, S. Moment conditions for convergence of particle filters with unbounded importance weights. Signal Proc. 2016, 118, 133–138. [Google Scholar] [CrossRef]
- Crisan, D.; Li, K. Generalised particle filters with gaussian mixtures. Stoch. Proc. Their Appl. 2015, 125, 2643–2673. [Google Scholar] [CrossRef]
- Whiteley, N. Stability properties of some particle filters. Ann. Appl. Probab. 2013, 23, 2500–2537. [Google Scholar] [CrossRef]
- Douc, R.; Moulines, E.; Olsson, J. Long-term stability of sequential Monte Carlo methods under verifiable conditions. Ann. Appl. Probab. 2014, 24, 1767–1802. [Google Scholar] [CrossRef]
- Straka, O.; Ŝimandl, M. A survey of sample size adaptation techniques for particle filters. IFAC Proc. Vol. 2009, 42, 1358–1363. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Sattar, T.P.; Corchado, J.M. Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches. Expert Syst. Appl. 2014, 41, 3944–3954. [Google Scholar] [CrossRef]
- Moral, P.D.; Doucet, A. Particle Methods: An Introduction with Applications. In ESAIM: Proceedings; EDP Sciences: Les Ulis, France, 2014; Volume 44, pp. 1–46. [Google Scholar]
- Pulford, G. Taxonomy of multiple target tracking methods. IEEE Proc. Radar Sonar Navig. 2005, 152, 291–304. [Google Scholar] [CrossRef]
- Vo, B.-T.; Mallick, M.; Bar-shalom, Y.; Coraluppi, S.; Osborne, R.; Mahler, R.; Vo, B.-N. Multitarget Tracking; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo Methods in Practice; Springer: New York, NY, USA, 2001. [Google Scholar]
- Gordon, N.J.; Salmond, D.J.; Smith, A.F. Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEEE Proc. F Radar Signal Proc. 1993, 140, 107–113. [Google Scholar] [CrossRef]
- Martino, L.; Elvira, V.; Louzada, F. Weighting a resampled particle in sequential Monte Carlo. In Proceedings of the 2016 IEEE Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 26–29 June 2016. [Google Scholar]
- Urteaga, I.; Bugallo, M.F.; Djurić, P.M. Sequential Monte Carlo methods under model uncertainty. In Proceedings of the 2016 IEEE Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 26–29 June 2016. [Google Scholar]
- Martino, L.; Read, J.; Elvira, V.; Louzada, F. Cooperative parallel particle filters for online model selection and applications to urban mobility. Digit. Signal Proc. 2017, 60, 172–185. [Google Scholar] [CrossRef]
- Godsill, S.; Clapp, T. Improvement Strategies for Monte Carlo Particle Filters; Springer: New York, NY, USA, 2001; pp. 139–158. [Google Scholar]
- Pitt, M.K.; Shephard, N. Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 1999, 94, 590–599. [Google Scholar] [CrossRef]
- Merwe, R.V.D.; Doucet, A.; Freitas, N.D.; Wan, E. The unscented particle filter. In Proceedings of the International Conference on Neural Information Processing Systems, Denver, CO, USA, 3–5 October 2000; pp. 563–569. [Google Scholar]
- Gu, S.; Ghahramani, Z.; Turner, R.E. Neural adaptive sequential Monte Carlo. In Proceedings of the 28th International Conference on Neural Information Processing Systems, 7–12 December 2015; MIT Press: Cambridge, MA, USA; pp. 2629–2637. [Google Scholar]
- Elvira, V.; Martino, L.; Luengo, D.; Bugallo, M.F. Efficient multiple importance sampling estimators. IEEE Signal Proc. Lett. 2015, 22, 1757–1761. [Google Scholar] [CrossRef]
- Elvira, V.; Martino, L.; Luengo, D.; Bugallo, M.F. Heretical multiple importance sampling. IEEE Signal Proc. Lett. 2016, 23, 1474–1478. [Google Scholar] [CrossRef]
- Martino, L.; Elvira, V.; Camps-Valls, G. Group importance sampling for particle filtering and mcmc. arXiv 2017, arXiv:1704.02771. [Google Scholar]
- Martino, L.; Elvira, V.; Luengo, D.; Corander, J. Layered adaptive importance sampling. Stat. Comput. 2017, 27, 599–623. [Google Scholar] [CrossRef]
- Oudjane, N.; Musso, C. Progressive correction for regularized particle filters. In Proceedings of the Third International Conference on Information Fusion, Paris, France, 10–13 July 2000; Volume 2. [Google Scholar]
- Daum, F.; Huang, J. Generalized particle flow for nonlinear filters. In Proceedings of the Signal and Data Processing of Small Targets 2010, Orlando, FL, USA, 2–4 April 2010; Volume 7698. [Google Scholar]
- Nurminen, H.; Piché, R.; Godsill, S. Gaussian flow sigma point filter for nonlinear Gaussian state-space models. In Proceedings of the 20th International Conference on Information Fusion (Fusion 2017), Xi’an, China, 10–13 July 2017; pp. 445–452. [Google Scholar]
- Yang, T.; Laugesen, R.S.; Mehta, P.G.; Meyn, S.P. Multivariable feedback particle filter. Automatica 2016, 71, 10–23. [Google Scholar] [CrossRef]
- Sigges, F.; Baum, M.; Hanebeck, U.D. A likelihood-free particle filter for multi-obiect tracking. In Proceedings of the 20th International Conference on Information Fusion (Fusion 2017), Xi’an, China, 10–13 July 2017; pp. 1–5. [Google Scholar]
- Li, T.; Corchado, J.M.; Bajo, J.; Sun, S.; de Paz, J.F. Effectiveness of Bayesian filters: An information fusion perspective. Inf. Sci. 2016, 329, 670–689. [Google Scholar] [CrossRef]
- Johansen, A.M.; Doucet, A. A note on auxiliary particle filters. Statist. Probab. Lett. 2008, 78, 1498–1504. [Google Scholar] [CrossRef]
- Li, T.; Sattar, T.P.; Sun, S. Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters. Signal Proc. 2012, 92, 1637–1645. [Google Scholar] [CrossRef]
- Li, T.; Sattar, T.P.; Han, Q.; Sun, S. Roughening methods to prevent sample impoverishment in the particle PHD filter. In Proceedings of the 16th International Conference on Information Fusion (FUSION 2013), Istanbul, Turkey, 9–12 July 2013; pp. 17–22. [Google Scholar]
- Liu, J.; West, M. Combined Parameter and State Estimation in Simulation-Based Filtering. In Sequential Monte Carlo Methods in Practice; Doucet, A., De Freitas, N., Gordon, N., Eds.; Springer: New York, NY, USA, 2001; pp. 197–223. [Google Scholar]
- Gordon, N.; Percival, J.; Robinson, M. The Kalman-Lévy filter and heavy-tailed models for tracking manoeuvring targets. In Proceedings of the Sixth International Conference of Information Fusion, Cairns, Queensland, Australia, 8–11 July 2003; Volume 2, pp. 1024–1031. [Google Scholar]
- Kong, A.; Liu, J.S.; Wong, W.H. Sequential imputations and Bayesian missing data problems. J. Am. Stat. Assoc. 1994, 89, 278–288. [Google Scholar] [CrossRef]
- Del Moral, P.; Doucet, A.; Jasra, A. On adaptive resampling strategies for sequential Monte Carlo methods. Bernoulli 2012, 18, 252–278. [Google Scholar] [CrossRef]
- Martino, L.; Elvira, V.; Louzada, F. Effective sample size for importance sampling based on discrepancy measures. Signal Proc. 2017, 131, 386–401. [Google Scholar] [CrossRef]
- Crisan, D.; Obanubi, O. Particle filters with random resampling times. Stoch. Proc. Their Appl. 2012, 122, 1332–1368. [Google Scholar] [CrossRef]
- Gning, A.; Ristic, B.; Mihaylova, L.; Abdallah, F. An introduction to box particle filtering. IEEE Signal Proc. Mag. 2013, 30, 1–7. [Google Scholar] [CrossRef]
- Chen, R.; Liu, J.S. Mixture kalman filters. J. R. Stat. Soc. Ser. B 2000, 62, 493–508. [Google Scholar] [CrossRef]
- Crisan, D.; Míguez, J. Particle-kernel estimation of the filter density in state-space models. Bernoulli 2014, 20, 1879–1929. [Google Scholar] [CrossRef]
- Ades, M.; van Leeuwen, P.J. An exploration of the equivalent weights particle filter. Q. J. R. Meteorol. Soc. 2013, 139, 820–840. [Google Scholar] [CrossRef]
- Snyder, C.; Bengtsson, T.; Bickel, P.; Anderson, J. Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 2008, 136, 4629–4640. [Google Scholar] [CrossRef]
- Doucet, A.; de Freitas, N.; Murphy, K.; Russell, S. Rao-blackwellised particle filtering for dynamic Bayesian networks. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA, 30 June–3 July 2000; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2000; pp. 176–183. [Google Scholar]
- Chavali, P.; Nehorai, A. Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking. Signal Proc. 2014, 97, 207–220. [Google Scholar] [CrossRef]
- Mustiere, F.; Bolic, M.; Bouchard, M. A modified Rao-Blackwellised particle filter. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing, Toulouse, France, 14–19 May 2006; Volume 3. [Google Scholar]
- Chen, T.; Schon, T.B.; Ohlsson, H.; Ljung, L. Decentralized particle filter with arbitrary state decomposition. IEEE Trans. Signal Proc. 2011, 59, 465–478. [Google Scholar] [CrossRef]
- Djuric, P.M.; Lu, T.; Bugallo, M.F. Multiple particle filtering. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal, Honolulu, HI, USA, 15–20 April 2007; Volume 3. [Google Scholar]
- Djuric, P.M.; Bugallo, M.F. Multiple particle filtering with improved efficiency and performance. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 4110–4114. [Google Scholar]
- Ait-El-Fquih, B.; Hoteit, I. A variational Bayesian multiple particle filtering scheme for large-dimensional systems. IEEE Trans. Signal Proc. 2016, 64, 5409–5422. [Google Scholar] [CrossRef]
- Schon, T.; Gustafsson, F.; Nordlund, P.J. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Proc. 2005, 53, 2279–2289. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Corchado, J.M.; Sattar, T.P.; Si, S. Numerical fitting-based likelihood calculation to speed up the particle filter. Int. J. Adapt. Control Signal Proc. 2016, 30, 1583–1602. [Google Scholar] [CrossRef]
- Liu, H.; Sun, F. Efficient visual tracking using particle filter with incremental likelihood calculation. Inf. Sci. 2012, 195, 141–153. [Google Scholar] [CrossRef]
- Hassan, W.; Bangalore, N.; Birch, P.; Young, R.; Chatwin, C. An adaptive sample count particle filter. Comput. Vis. Image Underst. 2012, 116, 1208–1222. [Google Scholar] [CrossRef]
- Elvira, V.; Míguez, J.; Djurić, P.M. A novel algorithm for adapting the number of particles in particle filtering. In Proceedings of the 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janerio, Brazil, 10–13 July 2016. [Google Scholar]
- Elvira, V.; Míguez, J.; Djurić, P.M. Adapting the number of particles in sequential Monte Carlo methods through an online scheme for convergence assessment. IEEE Trans. Signal Proc. 2017, 65, 1781–1794. [Google Scholar] [CrossRef]
- Fox, D. Adapting the sample size in particle filters through kld-sampling. Int. J. Robot. Res. 2003, 22, 985–1003. [Google Scholar] [CrossRef]
- Soto, A. Self adaptive particle filter. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, UK, 30 July–5 August 2005; pp. 1398–1406. [Google Scholar]
- Kwok, C.; Fox, D.; Meila, M. Real-time particle filters. Proc. IEEE 2004, 92, 469–484. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Sattar, T.P. Adapting sample size in particle filters through kld-resampling. Electron. Lett. 2013, 49, 12–740. [Google Scholar] [CrossRef]
- Lopez, F.; Zhang, L.; Mok, A.; Beaman, J. Particle filtering on GPU architectures for manufacturing applications. Comput. Ind. 2015, 71, 116–127. [Google Scholar] [CrossRef]
- Murray, L. GPU acceleration of the particle filter: The metropolis resampler. arXiv 2012, arXiv:1202.6163. [Google Scholar]
- Li, T.; Corchado, J.; Prieto, J. Convergence of distributed flooding and its application for distributed Bayesian filtering. IEEE Trans. Signal Inf. Process. Netw. 2017, 3, 580–591. [Google Scholar] [CrossRef]
- Gu, D. Distributed particle filter for target tracking. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Florence, Italy, 4–8 September 2006; pp. 3856–3861. [Google Scholar]
- Gu, D.; Sun, J.; Hu, Z.; Li, H. Consensus based distributed particle filter in sensor networks. In Proceedings of the 2008 IEEE International Conference on Information and Automation, Changsha, China, 20–23 June 2008; pp. 302–307. [Google Scholar]
- Hlinka, O.; Sluciak, O.; Hlawatsch, F.; Djuric, P.M.; Rupp, M. Likelihood consensus and its application to distributed particle filtering. IEEE Trans. Signal Proc. 2012, 60, 4334–4349. [Google Scholar] [CrossRef]
- Hlinka, O.; Hlawatsch, F.; Djurić, P.M. Distributed sequential estimation in asynchronous wireless sensor networks. IEEE Signal Proc. Lett. 2015, 22, 1965–1969. [Google Scholar] [CrossRef]
- Lee, S.H.; West, M. Convergence of the markov chain distributed particle filter (MCDPF). IEEE Trans. Signal Proc. 2013, 61, 801–812. [Google Scholar] [CrossRef]
- Djuric, P.M.; Beaudeau, J.; Bugallo, M.F. Non-centralized target tracking with mobile agents. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 5928–5931. [Google Scholar]
- Savic, V.; Wymeersch, H.; Zazo, S. Belief consensus algorithms for fast distributed target tracking in wireless sensor networks. Signal Proc. 2014, 95, 149–160. [Google Scholar] [CrossRef]
- Sayed, A.H. Adaptive networks. Proc. IEEE 2014, 102, 460–497. [Google Scholar] [CrossRef]
- Dedecius, K.; Djuric, P.M. Sequential estimation and diffusion of information over networks: A Bayesian approach with exponential family of distributions. IEEE Trans. Signal Proc. 2017, 65, 1795–1809. [Google Scholar] [CrossRef]
- Gupta, S.D.; Coates, M.; Rabbat, M. Error propagation in gossip-based distributed particle filters. IEEE Trans. Signal Inf. Proc. Netw. 2015, 1, 148–163. [Google Scholar]
- Bolic, M.; Djuric, P.M.; Hong, S. Resampling algorithms and architectures for distributed particle filters. IEEE Trans. Signal Proc. 2005, 53, 2442–2450. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Bolić, M.; Corchado, J.M. Algorithm design for parallel implementation of the SMC-PHD filter. Signal Proc. 2016, 119, 115–127. [Google Scholar] [CrossRef]
- Lang, L.; Chen, W.S.; Bakshi, B.R.; Goel, P.K.; Ungarala, S. Bayesian estimation via sequential Monte Carlo sampling-constrained dynamic systems. Automatica 2007, 43, 1615–1622. [Google Scholar] [CrossRef]
- Shao, X.; Huang, B.; Lee, J.M. Constrained Bayesian state estimation: A comparative study and a new particle filter based approach. J. Process Control 2010, 20, 143–157. [Google Scholar] [CrossRef]
- Kyriakides, I.; Morrell, D.; Papandreou-Suppappola, A. Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints. IEEE Trans. Signal Proc. 2008, 56, 937–948. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, B.; Liu, F. Constrained particle filtering methods for state estimation of nonlinear process. AIChE J. 2014, 60, 2072–2082. [Google Scholar] [CrossRef]
- Li, B.; Liu, C.; Chen, W.H. An auxiliary particle filtering algorithm with inequality constraints. IEEE Trans. Autom. Control 2017, 62, 4639–4646. [Google Scholar] [CrossRef]
- Amor, N.; Bouaynaya, N.C.; Shterenberg, R.; Chebbi, S. On the convergence of constrained particle filters. IEEE Signal Proc. Lett. 2017, 24, 858–862. [Google Scholar] [CrossRef]
- Vo, B.-T.; Vo, B.-N.; Cantoni, A. Bayesian filtering with random finite set observations. IEEE Trans. Signal Proc. 2008, 56, 1313–1326. [Google Scholar] [CrossRef]
- Ristic, B.; Vo, B.-T.; Vo, B.-N.; Farina, A. A tutorial on Bernoulli filters: theory, implementation and applications. IEEE Trans. Signal Proc. 2013, 61, 3406–3430. [Google Scholar] [CrossRef]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking: Decision-based methods. In Proceedings of the Signal and Data Processing of Small Targets, Orlando, FL, USA, 1–5 April 2002; Volume 4728, pp. 511–534. [Google Scholar]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1255–1321. [Google Scholar]
- Nemeth, C.; Fearnhead, P.; Mihaylova, L. Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments. IEEE Trans. Signal Proc. 2014, 62, 1245–1255. [Google Scholar] [CrossRef]
- McGinnity, S.; Irwin, G.W. Multiple model bootstrap filter for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 1006–1012. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W. Multiple model Bernoulli particle filter for maneuvering target tracking. J. Electron. Inf. Technol. 2017, 39, 634–639. [Google Scholar]
- Driessen, H.; Boers, Y. Efficient particle filter for jump markov nonlinear systems. IEEE Proc. Radar Sonar Navig. 2005, 152, 323–326. [Google Scholar] [CrossRef]
- Boers, Y.; Driessen, J. Interacting multiple model particle filter. IEEE Proc. Radar Sonar Navig. 2003, 150, 344–349. [Google Scholar] [CrossRef]
- Blom, H.A.; Bloem, E.A. Exact Bayesian and particle filtering of stochastic hybrid systems. IEEE Trans. Aerosp. Electron. Syst. 2007, 43. [Google Scholar] [CrossRef]
- Drovandi, C.C.; McGree, J.M.; Pettitt, A.N. A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design. J. Comput. Graphical Stat. 2014, 23, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, X.R.; Duan, Z. Hybrid grid multiple-model estimation with application to maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 122–136. [Google Scholar] [CrossRef]
- Fan, H.; Zhu, Y.; Fu, Q. Impact of mode decision delay on estimation error for maneuvering target interception. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 702–711. [Google Scholar] [CrossRef]
- Godsill, S.; Vermaak, J.; Ng, W.; Li, J.F. Models and Algorithms for Tracking of Maneuvering Objects Using Variable Rate Particle Filters. Proc. IEEE 2007, 95, 925–952. [Google Scholar] [CrossRef]
- Li, T.; Corchado, J.; Chen, H.; Bajo, J. Track a smoothly maneuvering target based on trajectory estimation. In Proceedings of the 20th International Conference on Information Fusion (Fusion 2017), Xi’an, China, 10–13 July 2017; pp. 800–807. [Google Scholar]
- Granstrom, K.; Baum, M.; Reuter, S. Extended object tracking: Introduction, overview and applications. arXiv 2016, arXiv:1604.00970. [Google Scholar]
- Giremus, A.; Tourneret, J.Y.; Calmettes, V. A particle filtering approach for joint detection/estimation of multipath effects on gps measurements. IEEE Trans. Signal Proc. 2007, 55, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Nandakumaran, N.; Sinha, A.; Kirubarajan, T. Joint detection and tracking of unresolved targets with monopulse radar. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1326–1341. [Google Scholar] [CrossRef]
- Williams, J.; Lau, R. Approximate evaluation of marginal association probabilities with belief propagation. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2942–2959. [Google Scholar] [CrossRef]
- Avitzour, D. Stochastic simulation Bayesian approach to multitarget tracking. IEEE Proc. Radar Sonar Navig. 1995, 142, 41–44. [Google Scholar] [CrossRef]
- Gordon, N. A hybrid bootstrap filter for target tracking in clutter. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 353–358. [Google Scholar] [CrossRef]
- Stone, L.D.; Corwin, T.L.; Barlow, C.A. Bayesian Multiple Target Tracking; Artech House, Inc.: Norwood, MA, USA, 1999. [Google Scholar]
- Isard, M.; Maccormick, J. Bramble: A Bayesian multiple-blob tracker. In Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 34–41. [Google Scholar]
- Orton, M.; Fitzgerald, W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Trans. Signal Proc. 2002, 50, 216–223. [Google Scholar] [CrossRef]
- Kreucher, C.; Kastella, K.; Hero, A.O. Multitarget tracking using the joint multitarget probability density. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1396–1414. [Google Scholar] [CrossRef]
- Morelande, M.R.; Kreucher, C.M.; Kastella, K. A Bayesian approach to multiple target detection and tracking. IEEE Trans. Signal Proc. 2007, 55, 1589–1604. [Google Scholar] [CrossRef]
- Yi, W.; Morelande, M.R.; Kong, L.; Yang, J. A computationally efficient particle filter for multitarget tracking using an independence approximation. IEEE Trans. Signal Proc. 2013, 61, 843–856. [Google Scholar] [CrossRef]
- Garcia-Fernandez, A.F.; Grajal, J.; Morelande, M.R. Two-layer particle filter for multiple target detection and tracking. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1569–1588. [Google Scholar] [CrossRef]
- Georgy, J.; Noureldin, A.; Mellema, G.R. Clustered mixture particle filter for underwater multitarget tracking in multistatic active sonobuoy systems. IEEE Trans. Syst. Man Cybern. Part C 2012, 42, 547–560. [Google Scholar] [CrossRef]
- Bugallo, M.F.; Djuri, P.M. Target tracking by symbiotic particle filtering. In Proceedings of the 2010 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2010; pp. 1–7. [Google Scholar]
- Mahler, R.P.S. Multitarget bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Vo, B.N.; Ma, W.K. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Streit, R. How I learned to stop worrying about a thousand and one filters and love analytic combinatorics. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–21. [Google Scholar]
- Bai, A.; Simmons, R.; Veloso, M. Multi-object tracking and identification via particle filtering over sets. In Proceedings of the 20th International Conference on Information Fusion (FUSION 2017), Xi’an, China, 10–13 July 2017; pp. 1263–1270. [Google Scholar]
- Leung, K.Y.K.; Inostroza, F.; Adams, M. Relating random vector and random finite set estimation in navigation, mapping, and tracking. IEEE Trans. Signal Proc. 2017, 65, 4609–4623. [Google Scholar] [CrossRef]
- Williams, J.L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1664–1687. [Google Scholar] [CrossRef]
- Streit, R.; Degen, C.; Koch, W. The pointillist family of multitarget tracking filters. arXiv 2015, arXiv:1505.08000. [Google Scholar]
- Zhao, L.; Ma, P.; Su, X.; Zhang, H. A new multi-target state estimation algorithm for PHD particle filter. In Proceedings of the 2010 13th International Conference on Information Fusion, Edinburgh, UK, 26–29 July 2010. [Google Scholar]
- Ristic, B.; Clark, D.; Vo, B.N. Improved SMC implementation of the PHD filter. In Proceedings of the 2010 13th International Conference on Information Fusion, Edinburgh, UK, 26–29 July 2010. [Google Scholar]
- Schikora, M.; Koch, W.; Streit, R.; Cremers, D. Sequential Monte Carlo method for multi-target tracking with the intensity filter. In Advances in Intelligent Signal Processing and Data Mining: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2012; Volume 410, pp. 55–87. [Google Scholar]
- Li, T.; Corchado, J.M.; Sun, S.; Fan, H. Multi-EAP: Extended EAP for multi-estimate extraction for SMC-PHD filter. Chin. J. Aeronaut. 2017, 30, 368–379. [Google Scholar] [CrossRef]
- Vo, B.-T.; Vo, B.-N. Labeled random finite sets and multi-object conjugate priors. IEEE Trans. Signal Proc. 2013, 61, 3460–3475. [Google Scholar] [CrossRef]
- Vo, B.-N.; Vo, B.-T.; Hoang, H.G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans. Signal Proc. 2017, 65, 1975–1987. [Google Scholar] [CrossRef]
- Aoki, E.H.; Mandal, P.K.; Svensson, L.; Boers, Y.; Bagchi, A. Labeling uncertainty in multitarget tracking. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1006–1020. [Google Scholar] [CrossRef]
- Degen, C.; Govaers, F.; Koch, W. Track maintenance using the SMC-intensity filter. In Proceedings of the 2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 4–6 September 2012; pp. 7–12. [Google Scholar]
- Czyz, J.; Ristic, B.; Macq, B. A particle filter for joint detection and tracking of color objects. Image Vis Comput. 2007, 25, 1271–1281. [Google Scholar] [CrossRef]
- Mallick, M.; Krishnamurthy, V.; Vo, B.N. Integrated Tracking, Classification, and Sensor Management: Theory and Applications; IEEE Press: Piscataway, NJ, USA, 2013. [Google Scholar]
- Li, T.; Chen, H.; Sun, S.; Corchado, J.M. Joint smoothing, tracking, and forecasting based on continuous-time target trajectory fitting. arXiv 2017, arXiv:1708.02196. [Google Scholar]
- Musicki, D.; Scala, B.F.L.; Evans, R.J. Integrated track splitting filter—Efficient multi-scan single target tracking in clutter. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1409–1425. [Google Scholar]
- Lin, L.; Xu, H.; An, W.; Sheng, W.; Xu, D. Tracking a large number of closely spaced objects based on the particle probability hypothesis density filter via optical sensor. Opt. Eng. 2011, 50, 116401. [Google Scholar] [CrossRef]
- García, A.F.; Morelande, M.R.; Grajal, J. Bayesian sequential track formation. IEEE Trans. Signal Proc. 2014, 62, 6366–6379. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Corchado, J.M.; Siyau, M.F. A particle dyeing approach for track continuity for the SMC-PHD filter. In Proceedings of the 17th International Conference on Information Fusion (FUSION 2014), Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Svensson, L.; Morelande, M. Target tracking based on estimation of sets of trajectories. In Proceedings of the 17th International Conference on Information Fusion (FUSION 2014), Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Garcia-Fernandez, A.F.; Svensson, L. Trajectory probability hypothesis density filter. arXiv 2016, arXiv:1605.07264. [Google Scholar]
- Bhaskar, H.; Dwivedi, K.; Dogra, D.P.; Al-Mualla, M.; Mihaylova, L. Autonomous detection and tracking under illumination changes, occlusions and moving camera. Signal Proc. 2015, 117, 343–354. [Google Scholar] [CrossRef]
- Poyiadjis, G.; Doucet, A.; Singh, S.S. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 2011, 98, 65–80. [Google Scholar] [CrossRef]
- Mahler, R.P.; Vo, B.-T.; Vo, B.-N. CPHD filtering with unknown clutter rate and detection profile. IEEE Trans. Signal Proc. 2011, 59, 3497–3513. [Google Scholar] [CrossRef]
- Papi, F.; Kim, D.Y. A particle multi-target tracker for superpositional measurements using labeled random finite sets. IEEE Trans. Signal Proc. 2015, 63, 4348–4358. [Google Scholar] [CrossRef]
- Ristic, B.; Clark, D.; Vo, B.-N.; Vo, B.-T. Adaptive target birth intensity for PHD and CPHD filters. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1656–1668. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Corchado, J.M.; Siyau, M.F. Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In Proceedings of the 17th International Conference on Information Fusion (FUSION 2014), Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Li, T.; Rodríguez, S.; Bajo, J.; Corchado, J.M.; Sun, S. On the Bias of the SIR Filter in Parameter Estimation of the Dynamics Process of State Space Models; Springer: Cham, Switzerland, 2015; pp. 87–95. [Google Scholar]
- Ristic, B.; Wang, X.; Arulampalam, S. Target motion analysis with unknown measurement noise variance. In Proceedings of the 20th International Conference on Information Fusion (Fusion 2017), Xi’an, China, 10–13 July 2017; pp. 1663–1670. [Google Scholar]
- Djurić, P.M.; Miguez, J. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters. In Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, 13–17 May 2002; Volume 2. [Google Scholar]
Topics | References |
---|---|
General Review or Monographs | [5,6,7,8] |
Nonlinear Parametric Bayesian Filter | [9] |
Nonlinear Bayesian Estimation | [10] |
PF in Finance and Economics | [11,12] |
PF in Geophysics | [13] |
PF in Decision Making | [14] |
PF in Extended/Group Target Tracking | [15] |
PF in Target Tracking | [16,17] |
PF in Change Detection and System Identification | [18] |
Non-standard PF | [19] |
PF for Parameter Estimation | [20,21,22] |
Resampling Methods | [23,24] |
Distributed PF | [25] |
PF Convergence | [26,27,28] |
PF Stability | [29,30] |
Particle Number Adjustment | [31] |
Weight Degeneracy and Impoverishment | [32] |
Particle Methods | [33] |
Multitarget Tracking | [34,35] |
Random Set PF | [3] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, T.; Sun, S.; Corchado, J.M. A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking. Sensors 2017, 17, 2707. https://doi.org/10.3390/s17122707
Wang X, Li T, Sun S, Corchado JM. A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking. Sensors. 2017; 17(12):2707. https://doi.org/10.3390/s17122707
Chicago/Turabian StyleWang, Xuedong, Tiancheng Li, Shudong Sun, and Juan M. Corchado. 2017. "A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking" Sensors 17, no. 12: 2707. https://doi.org/10.3390/s17122707
APA StyleWang, X., Li, T., Sun, S., & Corchado, J. M. (2017). A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking. Sensors, 17(12), 2707. https://doi.org/10.3390/s17122707