Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks
Abstract
:1. Introduction
2. Related Works
3. Preliminaries
3.1. Sample Entropy
- Step 1: Given a time series containing N data points , consider dimensional vector sequences, , m is called pattern length in the rest.
- Step 2: Define as the distance between the two vectors, which equals the maximum absolute difference between the corresponding elements in the two vectors. The expression is as follow:
- Step 3: Set the similarity criterion r, the probability that the other vectors are similar to vector is defined as :
- Step 4: Calculate the average value of , denoted as , which indicates the probability that two vectors will match for m points:
- Step 5: Set pattern length to m + 1, calculate :
- Step 6: Calculate the average value of , denoted as , which represents the probability that two vectors will match for m + 1 points:
- Step 7: Calculate sample entropy:
3.2. Composite Multiscale Entropy
4. Flexible Multiscale Entropy
- Step 1: Incorporating the idea of composite coarse-graining from the CMSE. For every scale factor , we transform the original time series to new time series as Equations (8) and (9).
- Step 2: For time series , calculate same as Equations (1)–(3). Note that, in the process of calculating , the length of time series is P, since the new time series has been coarse-grained from the original time series.
- Step 3: In this step, calculate . Different from the similarity accumulating function in sample entropy, we define a new accumulative function , which is a piecewise function that avoids the similarity of vectors changing suddenly between 0 and 1:
- Step 4: Calculate as follows:
- Step 5: Calculate the improved sample entropy for coarse-grained time series :
- Step 6: Calculate flexible multiscale entropy:
5. Experiment and Evaluation
5.1. Synthetic Noise Time Series
5.2. Real Vibration Data
6. Conclusions
7. Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Analytical FMSE Results for White Noises
References
- Pardo, J.; Zamoramartínez, F.; Botellarocamora, P. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes. Sensors 2015, 15, 9277–9304. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Ma, J.J.; Sheng, W.; Bi, D.W. Time series forecasting energy-efficient organization of wireless sensor networks. Sensors 2007, 7, 1766–1792. [Google Scholar]
- Luo, C.; Zhang, Y.; Xie, W.X. Traffic regulation based congestion control algorithm in sensor networks. J. Inf. Hiding Multimedia Signal Process. 2014, 5, 187–198. [Google Scholar]
- Sun, Y.; Li, M.; Xu, P. A cross-layer congestion control algorithm based on traffic prediction in wireless sensor networks. Appl. Mech. Mater. 2013, 397–400, 2641–2646. [Google Scholar] [CrossRef]
- Serdio, F.; Lughofer, E.; Pichler, K.; Buchegger, T.; Pichler, M.; Efendic, H. Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations. Inf. Fusion 2014, 20, 272–291. [Google Scholar] [CrossRef]
- Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 2013, 14, 28–44. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, G.; Yang, H. Sparse particle filtering for modeling space-time dynamics in distributed sensor networks. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan, 18–22 August 2014; pp. 626–631. [Google Scholar]
- Gu, Y.; Mccallum, A.; Towsley, D. Detecting anomalies in network traffic using maximum entropy estimation. In Proceedings of the ACM SIGCOMM Conference on Internet Measurement (IMC), Berkeley, CA, USA, 19–21 October 2005; pp. 345–350. [Google Scholar]
- Riihijärvi, J.; Wellens, M.; Mahonen, P. Measuring complexity and predictability in networks with multiscale entropy analysis. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Rio de Janeiro, Brazil, 19–25 April 2009; pp. 1107–1115. [Google Scholar]
- Steiger, M.; Bernard, J.; Mittelstädt, S.; Lücke-Tieke, H.; Keim, D.; May, T. Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks. Comput. Graph. Forum 2014, 33, 401–410. [Google Scholar] [CrossRef]
- Kasetty, S.; Stafford, C.; Walker, G.P. Real-Time Classification of Streaming Sensor Data. In Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence, Dayton, OH, USA, 3–5 November 2008; pp. 149–156. [Google Scholar]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Wei, Q.; Liu, Q.; Fan, S.Z.; Lu, C.W.; Lin, T.Y.; Abbod, M.F.; Shieh, J.S. Analysis of EEG via Multivariate Empirical Mode Decomposition for Depth of Anesthesia Based on Sample Entropy. Entropy 2013, 15, 3458–3470. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Grassberger, P. Information and Complexity Measures in Dynamical Systems. In Information Dynamics; Atmanspacher, H., Scheingraber, H., Eds.; Springer: New York, NY, USA, 1991; pp. 15–33. [Google Scholar]
- Ge, J.Y.; Zhou, P.; Zhao, X.; Liu, H.Y. Multiscale entropy analysis of EEG signal. Comput. Eng. Appl. 2009, 45, 13–15. [Google Scholar]
- Zhang, L.; Huang, W.Y.; Xiong, G.L. Assessment of rolling element bearing fault severity using multi-scale entropy. J. Vib. Shock 2014, 33, 185–189. [Google Scholar]
- Xie, Z.M. Multiscale entropy method for analysis of complex geophysical signals. Technol. Earthq. Disaster Prev. 2009, 4, 380–385. [Google Scholar]
- Chen, X.M.; Wang, H.Q.; Lin, J.Y.; Feng, G.S.; Zhao, C. Network Traffic Analysis for Mobile Terminal Based Multi-scale Entropy. In Proceedings of the Asia-Pacific Services Computing Conference, Fuzhou, China, 4–6 December 2014; pp. 74–80. [Google Scholar]
- McBride, J.; Zhao, X.P.; Munro, N.; Jicha, G. EEG multiscale entropy dynamics in mild cognitive impairment and early Alzheimer’s disease. In Proceedings of the Biomedical Science and Engineering Center Conference (BSEC), Oak Ridge, TN, USA, 6–8 May 2014; pp. 1–4. [Google Scholar]
- Zhang, X.; Chen, X.; Barkhaus, P.E. Multiscale entropy analysis of different spontaneous motor unit discharge patterns. IEEE J. Biomed. Health Inf. 2013, 17, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Martina, E.; Rodriguez, E.; Perez, R.E.; Ramirez, J.A. Multiscale entropy analysis of crude oil price dynamics. Energy Econ. 2011, 33, 936–947. [Google Scholar] [CrossRef]
- Valenza, G.; Nardelli, M.; Bertschy, G.; Lanata, A.; Scilingo, E.P. Mood states modulate complexity in heartbeat dynamics: A multiscale entropy analysis. EPL 2014, 107, 109–166. [Google Scholar] [CrossRef]
- Tarquis, A.M.; Bird, N.R.A.; Whitmore, A.P.; Cartagena, M.C.; Pachepsky, Y. Multiscale entropy-based analysis of soil transect data. Vadose Zone J. 2008, 7, 563–569. [Google Scholar] [CrossRef]
- Xia, J.; Shang, P.; Wang, J.; Shi, W. Classifying of financial time series based on multiscale entropy and multiscale time irreversibility. Phys. A Stat. Mech. Appl. 2014, 400, 151–158. [Google Scholar] [CrossRef]
- Chou, C.M. Applying Multiscale Entropy to the Complexity Analysis of Rainfall-Runoff Relationships. Entropy 2012, 14, 945–957. [Google Scholar] [CrossRef]
- Zheng, J.D.; Cheng, J.S.; Hu, S.Y. Rotor Fault Diagnosis Based on Multiscale Entropy. J. Vibr. Meas. Diagnosis 2013, 33, 294–297. [Google Scholar]
- Liu, Q.; Wei, Q.; Fan, S.Z.; Lu, C.W.; Lin, T.Y.; Abbod, M.F.; Shieh, J.S. Adaptive Computation of Multiscale Entropy and its Application in EEG Signals for Monitoring Depth of Anesthesia During Surgery. Entropy 2012, 14, 978–992. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, D.H.; Wang, K.H.; Liu, Q.; Abbod, M.F.; Jiang, B.C.; Chen, K.P.; Wu, C.; Shieh, J.S. Multivariate Multiscale Entropy Applied to Center of Pressure Signals Analysis: An Effect of Vibration Stimulation of Shoes. Entropy 2012, 14, 2157–2172. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, C.W.; Lee, K.Y.; Lin, S.G. Modified multiscale entropy for short-term time series analysis. Physica A 2013, 392, 5865–5873. [Google Scholar] [CrossRef]
- Pan, J.; Hu, H.; Liu, X.; Hu, Y. Multiscale Entropy Analysis on Human Operating Behavior. Entropy 2016, 18, 3. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, C.W.; Lin, S.G.; Wang, C.C.; Lee, K.Y. Time Series Analysis Using Composite Multiscale Entropy. Entropy 2013, 15, 1069–1084. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, C.W.; Lin, S.G.; Lee, K.Y.; Peng, C.K. Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 2014, 378, 1369–1374. [Google Scholar] [CrossRef]
- Niu, H.L.; Wang, J. Quantifying complexity of financial short-term time series by composite multiscale entropy measure. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 375–382. [Google Scholar] [CrossRef]
- Niu, H.L.; Wang, J. Entropy and Recurrence Measures of a Financial Dynamic System by an Interacting Voter System. Entropy 2015, 17, 2590–2605. [Google Scholar] [CrossRef]
- Borowiec, M.; Rysak, A.; Betts, D.-N.; Bowen, C.R.; Kim, H.A.; Litak, G. Complex response of a bistable laminated plate: Multiscale entropy analysis. Eur. Phys. J. Plus 2014, 129, 1–7. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A.; Wu, C.W.; Wu, S.D. Refined Composite Multiscale Permutation Entropy to Overcome Multiscale Permutation Entropy Length Dependence. IEEE Signal Process. Lett. 2015, 22, 2364–2367. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. The Multiscale Entropy Algorithm and its Variants: A Review. Entropy 2015, 17, 3110–3123. [Google Scholar] [CrossRef]
- Case Western Reserve University Bearing Data Center Website. Available online: http://www.oalib.com/references/13155135/ (accessed on 16 September 2014).
Data Length | Noise | Entropy | Scale Factor | Decrease in CV | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 8 | 16 | 24 | 32 | 40 | ||||
1000 | white noise | MSE | 0.023 | 0.074 | 0.136 | 0.171 | 0.206 | 0.283 | 55.90% |
CMSE | 0.023 | 0.039 | 0.074 | 0.103 | 0.148 | 0.203 | 29.28% | ||
FMSE | 0.02 | 0.03 | 0.055 | 0.073 | 0.102 | 0.132 | |||
1/f noise | MSE | 0.042 | 0.119 | 0.261 | 0.52 | 0.848 | 1.165 | 65.72% | |
CMSE | 0.042 | 0.071 | 0.095 | 0.195 | 0.381 | 0.49 | 19.57% | ||
FMSE | 0.035 | 0.06 | 0.102 | 0.143 | 0.285 | 0.415 | |||
2000 | white nose | MSE | 0.012 | 0.04 | 0.082 | 0.116 | 0.142 | 0.154 | 51.92% |
CMSE | 0.012 | 0.03 | 0.051 | 0.074 | 0.096 | 0.116 | 29.01% | ||
FMSE | 0.011 | 0.024 | 0.037 | 0.052 | 0.066 | 0.076 | |||
1/f noise | MSE | 0.038 | 0.073 | 0.116 | 0.162 | 0.289 | 0.34 | 62.38% | |
CMSE | 0.038 | 0.052 | 0.065 | 0.081 | 0.095 | 0.089 | 9.42% | ||
FMSE | 0.032 | 0.043 | 0.054 | 0.067 | 0.093 | 0.105 | |||
4000 | white noise | MSE | 0.007 | 0.027 | 0.054 | 0.064 | 0.101 | 0.109 | 48.29% |
CMSE | 0.007 | 0.02 | 0.036 | 0.053 | 0.072 | 0.084 | 29.89% | ||
FMSE | 0.006 | 0.016 | 0.027 | 0.037 | 0.049 | 0.055 | |||
1/f noise | MSE | 0.033 | 0.049 | 0.069 | 0.074 | 0.126 | 0.163 | 52.78% | |
CMSE | 0.033 | 0.035 | 0.042 | 0.052 | 0.056 | 0.066 | 16.79% | ||
FMSE | 0.027 | 0.028 | 0.035 | 0.043 | 0.046 | 0.055 | |||
10,000 | white noise | MSE | 0.003 | 0.017 | 0.029 | 0.04 | 0.055 | 0.063 | 48.37% |
CMSE | 0.003 | 0.012 | 0.02 | 0.03 | 0.039 | 0.047 | 29.28% | ||
FMSE | 0.003 | 0.01 | 0.015 | 0.021 | 0.027 | 0.03 | |||
1/f noise | MSE | 0.02 | 0.023 | 0.033 | 0.047 | 0.051 | 0.07 | 43.74% | |
CMSE | 0.02 | 0.02 | 0.022 | 0.027 | 0.035 | 0.039 | 17.6% | ||
FMSE | 0.016 | 0.016 | 0.018 | 0.022 | 0.029 | 0.032 |
Fault Class | Entropy | Scale | Decrease in CV | |||||
---|---|---|---|---|---|---|---|---|
1 | 8 | 16 | 24 | 32 | 40 | |||
N | MSE | 0.018 | 0.064 | 0.113 | 0.154 | 0.171 | 0.209 | 65.27% |
CMSE | 0.018 | 0.03 | 0.051 | 0.062 | 0.067 | 0.081 | 18.45% | |
FMSE | 0.014 | 0.025 | 0.043 | 0.051 | 0.055 | 0.063 | ||
O3 | MSE | 0.03 | 0.066 | 0.092 | 0.11 | 0.143 | 0.147 | 59.99% |
CMSE | 0.03 | 0.036 | 0.057 | 0.061 | 0.09 | 0.069 | 24.87% | |
FMSE | 0.022 | 0.029 | 0.045 | 0.047 | 0.062 | 0.047 | ||
O6 | MSE | 0.032 | 0.06 | 0.095 | 0.102 | 0.164 | 0.173 | 57.43% |
CMSE | 0.032 | 0.042 | 0.058 | 0.069 | 0.08 | 0.085 | 26.32% | |
FMSE | 0.023 | 0.034 | 0.045 | 0.052 | 0.054 | 0.055 | ||
O12 | MSE | 0.075 | 0.069 | 0.107 | 0.124 | 0.151 | 0.172 | 47.7% |
CMSE | 0.075 | 0.051 | 0.07 | 0.076 | 0.101 | 0.106 | 23.1% | |
FMSE | 0.058 | 0.041 | 0.056 | 0.06 | 0.074 | 0.075 | ||
B | MSE | 0.021 | 0.074 | 0.118 | 0.126 | 0.124 | 0.138 | 62.71% |
CMSE | 0.021 | 0.041 | 0.055 | 0.05 | 0.059 | 0.057 | 20.63% | |
FMSE | 0.016 | 0.033 | 0.045 | 0.04 | 0.045 | 0.042 | ||
I | MSE | 0.027 | 0.073 | 0.103 | 0.112 | 0.124 | 0.131 | 68.87% |
CMSE | 0.027 | 0.032 | 0.042 | 0.044 | 0.043 | 0.05 | 20.92% | |
FMSE | 0.019 | 0.028 | 0.035 | 0.034 | 0.032 | 0.036 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Yang, C.; Wan, J.; Zhang, W.; Guan, B.; Xiong, N. Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks. Sensors 2017, 17, 787. https://doi.org/10.3390/s17040787
Zhou R, Yang C, Wan J, Zhang W, Guan B, Xiong N. Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks. Sensors. 2017; 17(4):787. https://doi.org/10.3390/s17040787
Chicago/Turabian StyleZhou, Renjie, Chen Yang, Jian Wan, Wei Zhang, Bo Guan, and Naixue Xiong. 2017. "Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks" Sensors 17, no. 4: 787. https://doi.org/10.3390/s17040787