Improving GLONASS Precise Orbit Determination through Data Connection
Abstract
:1. Introduction
2. Data Connection Method
3. Experimental Validation
Basic observable | Undifferenced ionosphere-free code and phase combination |
Sampling rate | 300 s |
Arc length | 1 day |
Cutoff elevation | 7° |
Weighting | Priori precision 0.01 cycle and 0.6 m for raw phase and code, respectively Elevation-dependent, 1 for E > 30°, otherwise 2*sin(E) |
Phase center correction | PCO (Phase Center Offset) and PCV (Phase Center Variation) for GPS, GLONASS satellites and stations, igs08.atx [23] |
Phase wind up | Corrected [24] |
Tropospheric delay | GMF (Global Mapping Function) [31], priori delay [32], 2-hourly ZTD (Zenith Tropospheric Delay), 24-hourly gradients [33] |
Clock error | White noise |
Earth Rotation Parameters | IERS (International Earth Rotation and Reference Systems Service) C04 [34] tight constraint |
Tide displacement | IERS Conventions 2010 [35], FES2004 [36] |
Relativity effect | IERS Conventions 2010 |
Earth gravity | EIGEN_GL04C [37] up to 12 × 12 |
N-body gravitation | Sun, Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto regarded as point masses, JPL Planetary Ephemeris DE405 |
Solar radiation | Reduced Empirical CODE Orbit Model (ECOM) five parameters without a background model [38] |
Attitude model | GPS model [39], GLONASS model [40] |
Earth radiation and antenna thrust | Effects acting on the Box-Wing model applied [41] |
Additional empirical acceleration | Constant and periodic once-per--revolution accelerations along-track not estimated |
3.1. Data Connection Ratio
Manufacturer | Receiver Number |
---|---|
JAVAD | 22 |
JPS | 12 |
LEICA | 43 |
SEPT | 5 |
TPS | 16 |
TRIMBLE | 44 |
3.2. Improvement on GLONASS Satellite Orbits
4. Conclusions and Suggestions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Willis, P.; Beutler, G.; Gurtner, W.; Hein, G.; Neilan, R.E.; Noll, C.; Slater, J. IGEX: International GLONASS experiment—Scientific objectives and preparation. Adv. Space Res. 1999, 23, 659–663. [Google Scholar] [CrossRef]
- Dow, J.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Slater, J.A.; Weber, R.; Fragner, D. The IGS GLONASS Pilot Project—Transitioning an experiment into an operational GNSS service. In Proceedings of the ION GNSS 2004, Long Beach, CA, USA, 21–24 September 2004; pp. 1749–1757.
- Ineichen, D.; Springer, T.; Beutler, G. Combined processing of the IGS and the IGEX network. J. Geod. 2001, 75, 575–586. [Google Scholar] [CrossRef]
- Kuang, D.; Bar-Sever, Y.E.; Bertiger, W.I.; Hurst, K.J.; Zumberge, J.F. GPS-assisted GLONASS orbit determination. J. Geod. 2001, 75, 569–574. [Google Scholar] [CrossRef]
- Romero, I.; Garcia, C.; Kahle, R.; Dow, J.; Martin-Mur, T. Precise orbit determination of GLONASS satellites at the European space agency. Adv. Space Res. 2002, 30, 281–287. [Google Scholar] [CrossRef]
- Weber, R.; Slater, J.A.; Fragner, E.; Glotov, V.; Habrich, H.; Romero, I.; Schaer, S. Precise GLONASS orbit determination within the IGS/IGLOS—Pilot Project. Adv. Space Res. 2005, 36, 369–375. [Google Scholar] [CrossRef]
- Fritsche, M.; Sośnica, K.; Rodríguez-Solano, C.; Steigenberger, P.; Wang, K.; Dietrich, R.; Dach, R.; Hugentobler, U.; Rothacher, M. Homogeneous reprocessing of GPS, GLONASS and SLR observations. J. Geod. 2014, 88, 625–642. [Google Scholar] [CrossRef]
- Griffiths, J.; Ray, J. On the precision and accuracy of IGS orbits. J. Geod. 2009, 83, 277–287. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Blewitt, G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km. J. Geophys. Res. 1989, 94, 10187–10203. [Google Scholar] [CrossRef]
- Dong, D.; Bock, Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California. J. Geophys. Res. 1989, 94, 3949–3966. [Google Scholar] [CrossRef]
- Mervart, L. Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System. Ph.D Thesis, University of Berne, Berne, Switzerland, 1995. [Google Scholar]
- Ge, M.; Gendt, G.; Dick, G.; Zhang, F.P. Improving carrier-phase ambiguity resolution in global GPS network solutions. J. Geod. 2005, 79, 103–110. [Google Scholar] [CrossRef]
- GLONASS ICD, GLONASS Interface Control Document; Russian Institute of Space Device Engineering: Moscow, Russia, 2008.
- Wang, J.; Rizos, C.; Stewart, M.P.; Leick, A. GPS and GLONASS integration: Modeling and ambiguity resolution issues. GPS Solut. 2001, 5, 55–64. [Google Scholar] [CrossRef]
- Wanninger, L. Carrier-phase inter-frequency biases of GLONASS receivers. J. Geod. 2012, 86, 139–148. [Google Scholar] [CrossRef]
- Dach, R.; Schaer, S.; Lutz, S.; Bock, H.; Orliac, E.; Prange, L.; Thaller, D.; Mervart, L.; Jäggi, A.; Beutler, G.; et al. Annual Center Reports: Center for Orbit Determination in Europe (CODE). In Technical Report 2011; Meindl, M., Dach, R., Jean, Y., Eds.; International GNSS Service, IGS Central Bureau: Pasadena, CA, USA, 2012; pp. 29–40. [Google Scholar]
- Chen, H.; Jiang, W.; Ge, M.; Wickert, J.; Schuh, H. An enhanced strategy for GNSS data processing of massive networks. J. Geod. 2014, 88, 857–867. [Google Scholar] [CrossRef]
- Blewitt, G.; Bertiger, W.; Weiss, J.P. Ambizap3 and GPS Carrier Range: A New Data Type with IGS Applications; IGS Workshop: Newcastle, UK, 2010. [Google Scholar]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R.; Collilieux, X.; Garayt, B. IGS08: The IGS realization of ITRF2008. GPS Solut. 2012, 16, 483–494. [Google Scholar] [CrossRef]
- Wu, J.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1993, 18, 91. [Google Scholar]
- Schaer, S. Differential Code Biases (DCB) in GNSS Analysis; IGS Workshop: Miami Beach, FL, USA, 2008. [Google Scholar]
- Melbourne, W.G. The case for ranging in GPS-based geodetic systems. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 373–386.
- Wübbena, G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 403–412.
- Ge, M.; Gendt, G.; Dick, G.; Zhang, F.; Rothacher, M. A New Data Processing Strategy for Huge GNSS Global Networks. J Geod. 2006, 80, 199–203. [Google Scholar] [CrossRef]
- Liu, J.; Ge, M. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar]
- Shi, C.; Zhao, Q.; Geng, J.; Lou, Y.; Ge, M.; Liu, J. Recent development of PANDA software in GNSS data processing. In Proceedings of the International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Wuhan, China, 28–30 December 2008.
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L7304. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Geophys. Monogr. Ser. 1972, 15, 274–251. [Google Scholar]
- Chen, G.; Herring, T.A. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. 1997, 102, 20489–20502. [Google Scholar] [CrossRef]
- Bizouard, C.; Gambis, D. The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2008. IERS Notice. 2011. Available online: http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf (accessed on 20 July 2015).
- Petit, G.; Luzum, B. IERS Conventions (2010); Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010. (In Germany) [Google Scholar]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Förste, C.; Schmidt, R.; Stubenvoll, R.; Flechtner, F.; Meyer, U.; König, R.; Neumayer, H.; Biancale, R.; Lemoine, J.; Bruinsma, S.; et al. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geod. 2008, 82, 331–346. [Google Scholar] [CrossRef]
- Springer, T.A.; Beutler, G.; Rothacher, M. A New Solar Radiation Pressure Model for GPS Satellites. GPS Solut. 1999, 2, 50–62. [Google Scholar] [CrossRef]
- Kouba, J. A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut. 2009, 13, 1–12. [Google Scholar] [CrossRef]
- Dilssner, F.; Springer, T.; Gienger, G.; Dow, J. The GLONASS-M satellite yaw-attitude model. Adv. Space Res. 2011, 47, 160–171. [Google Scholar] [CrossRef]
- Rodriguez-Solano, C.; Hugentobler, U.; Steigenberger, P.; Lutz, S. Impact of Earth radiation pressure on GPS position estimates. J. Geod. 2012, 86, 309–317. [Google Scholar] [CrossRef]
- Zhang, B.; Ou, J.; Yuan, Y.; Li, Z. Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci. China Earth Sci. 2012, 55, 1919–1928. [Google Scholar] [CrossRef]
- Zhang, B.; Teunissen, P.G. Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines. Sci. Bull. 2015, 1–10. [Google Scholar] [CrossRef]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef]
- Rodriguez-Solano, C.J.; Hugentobler, U.; Steigenberger, P.; Bloßfeld, M.; Fritsche, M. Reducing the draconitic errors in GNSS geodetic products. J. Geod. 2014, 88, 559–574. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ge, M.; Shi, C.; Lou, Y.; Wickert, J.; Schuh, H. Improving GLONASS Precise Orbit Determination through Data Connection. Sensors 2015, 15, 30104-30114. https://doi.org/10.3390/s151229790
Liu Y, Ge M, Shi C, Lou Y, Wickert J, Schuh H. Improving GLONASS Precise Orbit Determination through Data Connection. Sensors. 2015; 15(12):30104-30114. https://doi.org/10.3390/s151229790
Chicago/Turabian StyleLiu, Yang, Maorong Ge, Chuang Shi, Yidong Lou, Jens Wickert, and Harald Schuh. 2015. "Improving GLONASS Precise Orbit Determination through Data Connection" Sensors 15, no. 12: 30104-30114. https://doi.org/10.3390/s151229790
APA StyleLiu, Y., Ge, M., Shi, C., Lou, Y., Wickert, J., & Schuh, H. (2015). Improving GLONASS Precise Orbit Determination through Data Connection. Sensors, 15(12), 30104-30114. https://doi.org/10.3390/s151229790