Transcriptional Regulation of Glucose Sensors in Pancreatic β-Cells and Liver: An Update
Abstract
:1. Introduction
2. Transcriptional Regulation of SLC2A2 in the Liver and β-Cells of Pancreas
3. Transcriptional Regulation of Glucokinase (GCK)
3.1. Beta Cell Glucokinase (βGCK)
3.2. Liver Glucokinase (LGCK)
4. Effect of Promoter Polymorphisms on SLC2A2 and GCK Transcription
4.1. Promoter Polymorphisms in SLC2A2 Gene
4.2. Promoter Polymorphisms in GCK Gene
5. Conclusions
Acknowledgments
References
- Thorens, B. Glucose sensing and the pathogenesis of obesity and type 2 diabetes. Int. J. Obes. (Lond) 2008, 32, S62–S71. [Google Scholar]
- Magnuson, M.A.; Matschinsky, F.M. Glucokinase as a glucose sensor: Past, present and future. In Glucokinase and Glycemic Disease: From Basics to Novle Therapeutics; Karger: Basel. Switzerland, 2004; pp. 1–17. [Google Scholar]
- Tarasov, A.; Dusonchet, J.; Ashcroft, F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: A pas de deux. Diabetes 2004, 53, S113–S122. [Google Scholar]
- Muoio, D.M.; Newgard, C.B. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol 2008, 9, 193–205. [Google Scholar]
- Remedi, M.S.; Nichols, C.G. Hyperinsulinism and diabetes: genetic dissection of beta cell metabolism-excitation coupling in mice. Cell Metab 2009, 10, 442–453. [Google Scholar]
- Fajans, S.S.; Bell, G.I.; Polonsky, K.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl. J. Med 2001, 345, 971–980. [Google Scholar]
- Vaxillaire, M.; Froguel, P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. Endocr. Rev 2008, 29, 254–264. [Google Scholar]
- O’Rahilly, S. Human genetics illuminates the paths to metabolic disease. Nature 2009, 462, 307–314. [Google Scholar]
- Im, S.S.; Kim, S.Y.; Kim, H.I.; Ahn, Y.H. Transcriptional regulation of glucose sensors in pancreatic beta cells and liver. Curr. Diabetes Rev 2006, 2, 11–18. [Google Scholar]
- Mueckler, M.; Kruse, M.; Strube, M.; Riggs, A.C.; Chiu, K.C.; Permutt, M.A. A mutation in the Glut2 glucose transporter gene of a diabetic patient abolishes transport activity. J. Biol. Chem 1994, 269, 17765–17767. [Google Scholar]
- Waeber, G.; Thompson, N.; Haefliger, J.A.; Nicod, P. Characterization of the murine high Km glucose transporter GLUT2 gene and its transcriptional regulation by glucose in a differentiated insulin-secreting cell line. J. Biol. Chem 1994, 269, 26912–26919. [Google Scholar]
- Leturque, A.; Brot-Laroche, E.; Le Gall, M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am. J. Physiol. Endocrinol. Metab 2009, 296, E985–E992. [Google Scholar]
- Chen, L.; Alam, T.; Johnson, J.H.; Hughes, S.; Newgard, C.B.; Unger, R.H. Regulation of beta-cell glucose transporter gene expression. Proc. Natl. Acad. Sci. USA 1990, 87, 4088–4092. [Google Scholar]
- Postic, C.; Burcelin, R.; Rencurel, F.; Pegorier, J.P.; Loizeau, M.; Girard, J.; Leturque, A. Evidence for a transient inhibitory effect of insulin on GLUT2 expression in the liver: Studies in vivo and in vitro. Biochem. J 1993, 293, 119–124. [Google Scholar]
- Rencurel, F.; Waeber, G.; Antoine, B.; Rocchiccioli, F.; Maulard, P.; Girard, J.; Leturque, A. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem. J 1996, 314, 903–909. [Google Scholar]
- Thorens, B.; Wu, Y.J.; Leahy, J.L.; Weir, G.C. The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment. J. Clin. Invest 1992, 90, 77–85. [Google Scholar]
- Ohneda, M.; Johnson, J.H.; Inman, L.R.; Chen, L.; Suzuki, K.; Goto, Y.; Alam, T.; Ravazzola, M.; Orci, L.; Unger, R.H. GLUT2 expression and function in beta-cells of GK rats with NIDDM. Dissociation between reductions in glucose transport and glucose-stimulated insulin secretion. Diabetes 1993, 42, 1065–1072. [Google Scholar]
- Stoffel, M.; Froguel, P.; Takeda, J.; Zouali, H.; Vionnet, N.; Nishi, S.; Weber, I.T.; Harrison, R.W.; Pilkis, S.J.; Lesage, S. Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc. Natl. Acad. Sci. USA 1992, 89, 7698–7702. [Google Scholar]
- Postic, C.; Niswender, K.D.; Decaux, J.F.; Parsa, R.; Shelton, K.D.; Gouhot, B.; Pettepher, C.C.; Granner, D.K.; Girard, J.; Magnuson, M.A. Cloning and characterization of the mouse glucokinase gene locus and identification of distal liver-specific DNase I hypersensitive sites. Genomics 1995, 29, 740–750. [Google Scholar]
- Williams, C.P.; Granner, D.K.; Magnuson, M.A.; Chalkley, R. Cell specific differences in DNase I hypersensitivity between the two promoters of the rat glucokinase gene. Biochem. Biophys. Res. Commun 1995, 215, 272–279. [Google Scholar]
- Iynedjian, P.B. Molecular physiology of mammalian glucokinase. Cell Mol. Life Sci 2009, 66, 27–42. [Google Scholar]
- Ahn, Y.H.; Kim, J.W.; Han, G.S.; Lee, B.G.; Kim, Y.S. Cloning and characterization of rat pancreatic beta-cell/liver type glucose transporter gene: a unique exon/intron organization. Arch. Biochem. Biophys 1995, 323, 387–396. [Google Scholar]
- Rahimian, R.; Masih-Khan, E.; Lo, M.; van Breemen, C.; McManus, B.M.; Dube, G.P. Hepatic over-expression of peroxisome proliferator activated receptor gamma2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus. Mol. Cell Biochem 2001, 224, 29–37. [Google Scholar]
- Kim, H.I.; Cha, J.Y.; Kim, S.Y.; Kim, J.W.; Roh, K.J.; Seong, J.K.; Lee, N.T.; Choi, K.Y.; Kim, K.S.; Ahn, Y.H. Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells. Diabetes 2002, 51, 676–685. [Google Scholar]
- Shih, D.Q.; Screenan, S.; Munoz, K.N.; Philipson, L.; Pontoglio, M.; Yaniv, M.; Polonsky, K.S.; Stoffel, M. Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes 2001, 50, 2472–2480. [Google Scholar]
- Cha, J.Y.; Kim, H.; Kim, K.S.; Hur, M.W.; Ahn, Y. Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene. Cooperative role of hepatocyte nuclear factors 1alpha and 3beta. J. Biol. Chem 2000, 275, 18358–18365. [Google Scholar]
- Freitas, H.S.; Schaan, B.D.; David-Silva, A.; Sabino-Silva, R.; Okamoto, M.M.; Alves-Wagner, A.B.; Mori, R.C.; Machado, U.F. SLC2A2 gene expression in kidney of diabetic rats is regulated by HNF-1alpha and HNF-3beta. Mol. Cell Endocrinol 2009, 305, 63–70. [Google Scholar]
- Ban, N.; Yamada, Y.; Someya, Y.; Miyawaki, K.; Ihara, Y.; Hosokawa, M.; Toyokuni, S.; Tsuda, K.; Seino, Y. Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes 2002, 51, 1409–1418. [Google Scholar]
- Rausa, F.M.; Tan, Y.; Zhou, H.; Yoo, K.W.; Stolz, D.B.; Watkins, S.C.; Franks, R.R.; Unterman, T.G.; Costa, R.H. Elevated levels of hepatocyte nuclear factor 3beta in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis. Mol. Cell Biol 2000, 20, 8264–8282. [Google Scholar]
- Tan, Y.; Hughes, D.; Wang, X.; Costa, R.H. Adenovirus-mediated increase in HNF-3beta or HNF-3alpha shows differences in levels of liver glycogen and gene expression. Hepatology 2002, 35, 30–39. [Google Scholar]
- Tan, Y.; Adami, G.; Costa, R.H. Maintaining HNF6 expression prevents AdHNF3beta-mediated decrease in hepatic levels of Glut-2 and glycogen. Hepatology 2002, 35, 790–798. [Google Scholar]
- Rubins, N.E.; Friedman, J.R.; Le, P.P.; Zhang, L.; Brestelli, J.; Kaestner, K.H. Transcriptional networks in the liver: hepatocyte nuclear factor 6 function is largely independent of Foxa2. Mol. Cell Biol 2005, 25, 7069–7077. [Google Scholar]
- Lee, C.S.; Sund, N.J.; Vatamaniuk, M.Z.; Matschinsky, F.M.; Stoffers, D.A.; Kaestner, K.H. Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes 2002, 51, 2546–2551. [Google Scholar]
- Shen, W.; Scearce, L.M.; Brestelli, J.E.; Sund, N.J.; Kaestner, K.H. Foxa3 (hepatocyte nuclear factor 3gamma ) is required for the regulation of hepatic GLUT2 expression and the maintenance of glucose homeostasis during a prolonged fast. J. Biol. Chem 2001, 276, 42812–42817. [Google Scholar]
- Stoffel, M.; Duncan, S.A. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc. Natl. Acad. Sci. USA 1997, 94, 13209–13214. [Google Scholar]
- Wang, H.; Maechler, P.; Antinozzi, P.A.; Hagenfeldt, K.A.; Wollheim, C.B. Hepatocyte nuclear factor 4alpha regulates the expression of pancreatic beta-cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J. Biol. Chem 2000, 275, 35953–35959. [Google Scholar]
- Babu, D.A.; Deering, T.G.; Mirmira, R.G. A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol. Genet. Metab 2007, 92, 43–55. [Google Scholar]
- Waeber, G.; Thompson, N.; Nicod, P.; Bonny, C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol. Endocrinol 1996, 10, 1327–1334. [Google Scholar]
- Ahlgren, U.; Jonsson, J.; Jonsson, L.; Simu, K.; Edlund, H. beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998, 12, 1763–1768. [Google Scholar]
- Lottmann, H.; Vanselow, J.; Hessabi, B.; Walther, R. The Tet-On system in transgenic mice: inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic beta-cells. J. Mol. Med 2001, 79, 321–328. [Google Scholar]
- Brissova, M.; Shiota, M.; Nicholson, W.E.; Gannon, M.; Knobel, S.M.; Piston, D.W.; Wright, C.V.; Powers, A.C. Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J. Biol. Chem 2002, 277, 11225–11232. [Google Scholar]
- Chakrabarti, S.K.; James, J.C.; Mirmira, R.G. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J. Biol. Chem 2002, 277, 13286–13293. [Google Scholar]
- Ueda, T.; Furusawa, T.; Kurahashi, T.; Tessarollo, L.; Bustin, M. The nucleosome binding protein HMGN3 modulates the transcription profile of pancreatic beta cells and affects insulin secretion. Mol. Cell Biol 2009, 29, 5264–5276. [Google Scholar]
- Ben-Shushan, E.; Marshak, S.; Shoshkes, M.; Cerasi, E.; Melloul, D. A pancreatic beta-cell-specific enhancer in the human PDX-1 gene is regulated by hepatocyte nuclear factor 3beta (HNF-3beta), HNF-1alpha, and SPs transcription factors. J. Biol. Chem 2001, 276, 17533–17540. [Google Scholar]
- Samaras, S.E.; Cissell, M.A.; Gerrish, K.; Wright, C.V.; Gannon, M.; Stein, R. Conserved sequences in a tissue-specific regulatory region of the pdx-1 gene mediate transcription in Pancreatic beta cells: role for hepatocyte nuclear factor 3 beta and Pax6. Mol. Cell Biol 2002, 22, 4702–4713. [Google Scholar]
- Patane, G.; Kaneto, H.; Toschi, E.; Sharma, A.; Gupta, S.; Weir, G.C. Induction of Mad expression leads to augmentation of insulin gene transcription. Biochem. Biophys. Res. Commun 2003, 303, 1199–1208. [Google Scholar]
- Eto, K.; Kaur, V.; Thomas, M.K. Regulation of insulin gene transcription by the immediate-early growth response gene Egr-1. Endocrinology 2006, 147, 2923–2935. [Google Scholar]
- Eto, K.; Kaur, V.; Thomas, M.K. Regulation of pancreas duodenum homeobox-1 expression by early growth response-1. J. Biol. Chem 2007, 282, 5973–5983. [Google Scholar]
- Samaras, S.E.; Zhao, L.; Means, A.; Henderson, E.; Matsuoka, T.A.; Stein, R. The islet beta cell-enriched RIPE3b1/Maf transcription factor regulates pdx-1 expression. J. Biol. Chem 2003, 278, 12263–12270. [Google Scholar]
- Babu, D.A.; Chakrabarti, S.K.; Garmey, J.C.; Mirmira, R.G. Pdx1 and BETA2/NeuroD1 participate in a transcriptional complex that mediates short-range DNA looping at the insulin gene. J. Biol. Chem 2008, 283, 8164–8172. [Google Scholar]
- Sun, Y.; Zhang, L.; Gu, H.F.; Han, W.; Ren, M.; Wang, F.; Gong, B.; Wang, L.; Guo, H.; Xin, W.; Zhao, J.; Gao, L. Peroxisome proliferator-activated receptor-alpha regulates the expression of pancreatic/duodenal homeobox-1 in rat insulinoma (INS-1) cells and ameliorates glucose-induced insulin secretion impaired by palmitate. Endocrinology 2008, 149, 662–671. [Google Scholar]
- Moibi, J.A.; Gupta, D.; Jetton, T.L.; Peshavaria, M.; Desai, R.; Leahy, J.L. Peroxisome proliferator-activated receptor-gamma regulates expression of PDX-1 and NKX6.1 in INS-1 cells. Diabetes 2007, 56, 88–95. [Google Scholar]
- Buteau, J.; Shlien, A.; Foisy, S.; Accili, D. Metabolic diapause in pancreatic beta-cells expressing a gain-of-function mutant of the forkhead protein Foxo1. J. Biol. Chem 2007, 282, 287–293. [Google Scholar]
- Kitamura, T.; Nakae, J.; Kitamura, Y.; Kido, Y.; Biggs, W.H., III; Wright, C.V.; White, M.F.; Arden, K.C.; Accili, D. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J. Clin. Invest 2002, 110, 1839–1847. [Google Scholar]
- Artner, I.; Le Lay, J.; Hang, Y.; Elghazi, L.; Schisler, J.C.; Henderson, E.; Sosa-Pineda, B.; Stein, R. MafB: An activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 2006, 55, 297–304. [Google Scholar]
- Nishimura, W.; Kondo, T.; Salameh, T.; El Khattabi, I.; Dodge, R.; Bonner-Weir, S.; Sharma, A. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev. Biol 2006, 293, 526–539. [Google Scholar]
- Artner, I.; Blanchi, B.; Raum, J.C.; Guo, M.; Kaneko, T.; Cordes, S.; Sieweke, M.; Stein, R. MafB is required for islet beta cell maturation. Proc. Natl. Acad. Sci. USA 2007, 104, 3853–3858. [Google Scholar]
- Zhang, C.; Moriguchi, T.; Kajihara, M.; Esaki, R.; Harada, A.; Shimohata, H.; Oishi, H.; Hamada, M.; Morito, N.; Hasegawa, K.; Kudo, T.; Engel, J.D.; Yamamoto, M.; Takahashi, S. MafA is a key regulator of glucose-stimulated insulin secretion. Mol. Cell Biol 2005, 25, 4969–4976. [Google Scholar]
- Im, S.S.; Kim, J.W.; Kim, T.H.; Song, X.L.; Kim, S.Y.; Kim, H.I.; Ahn, Y.H. Identification and characterization of peroxisome proliferator response element in the mouse GLUT2 promoter. Exp. Mol. Med 2005, 37, 101–110. [Google Scholar]
- Kim, H.I.; Kim, J.W.; Kim, S.H.; Cha, J.Y.; Kim, K.S.; Ahn, Y.H. Identification and functional characterization of the peroxisomal proliferator response element in rat GLUT2 promoter. Diabetes 2000, 49, 1517–1524. [Google Scholar]
- Kim, H.I.; Ahn, Y.H. Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes 2004, 53, S60–S65. [Google Scholar]
- Kim, H.S.; Noh, J.H.; Hong, S.H.; Hwang, Y.C.; Yang, T.Y.; Lee, M.S.; Kim, K.W.; Lee, M.K. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression. Biochem. Biophys. Res. Commun 2008, 367, 623–629. [Google Scholar]
- Yajima, K.; Hirose, H.; Fujita, H.; Seto, Y.; Ukeda, K.; Miyashita, K.; Kawai, T.; Yamamoto, Y.; Ogawa, T.; Yamada, T.; Saruta, T. Combination therapy with PPARgamma and PPARalpha agonists increases glucose-stimulated insulin secretion in db/db mice. Am. J. Physiol. Endocrinol. Metab 2003, 284, E966–E971. [Google Scholar]
- Evans-Molina, C.; Robbins, R.D.; Kono, T.; Tersey, S.A.; Vestermark, G.L.; Nunemaker, C.S.; Garmey, J.C.; Deering, T.G.; Keller, S.R.; Maier, B.; Mirmira, R.G. Peroxisome proliferator-activated receptor gamma activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol. Cell Biol 2009, 29, 2053–2067. [Google Scholar]
- Wang, M.Y.; Koyama, K.; Shimabukuro, M.; Mangelsdorf, D.; Newgard, C.B.; Unger, R.H. Overexpression of leptin receptors in pancreatic islets of Zucker diabetic fatty rats restores GLUT-2, glucokinase, and glucose-stimulated insulin secretion. Proc. Natl. Acad. Sci. USA 1998, 95, 11921–11926. [Google Scholar]
- Yessoufou, A.; Ategbo, J.M.; Attakpa, E.; Hichami, A.; Moutairou, K.; Dramane, K.L.; Khan, N.A. Peroxisome proliferator-activated receptor-alpha modulates insulin gene transcription factors and inflammation in adipose tissues in mice. Mol. Cell Biochem 2009, 323, 101–111. [Google Scholar]
- Asano, T.; Katagiri, H.; Tsukuda, K.; Lin, J.L.; Ishihara, H.; Yazaki, Y.; Oka, Y. Upregulation of GLUT2 mRNA by glucose, mannose, and fructose in isolated rat hepatocytes. Diabetes 1992, 41, 22–25. [Google Scholar]
- Schuit, F.; Flamez, D.; De Vos, A.; Pipeleers, D. Glucose-regulated gene expression maintaining the glucose-responsive state of beta-cells. Diabetes 2002, 51, S326–S332. [Google Scholar]
- Im, S.S.; Kang, S.Y.; Kim, S.Y.; Kim, H.I.; Kim, J.W.; Kim, K.S.; Ahn, Y.H. Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes 2005, 54, 1684–1691. [Google Scholar]
- Diraison, F.; Ravier, M.A.; Richards, S.K.; Smith, R.M.; Shimano, H.; Rutter, G.A. SREBP1 is required for the induction by glucose of pancreatic beta-cell genes involved in glucose sensing. J. Lipid Res 2008, 49, 814–822. [Google Scholar]
- Rencurel, F.; Waeber, G.; Bonny, C.; Antoine, B.; Maulard, P.; Girard, J.; Leturque, A. cAMP prevents the glucose-mediated stimulation of GLUT2 gene transcription in hepatocytes. Biochem. J 1997, 322, 441–448. [Google Scholar]
- Pei, L.; Waki, H.; Vaitheesvaran, B.; Wilpitz, D.C.; Kurland, I.J.; Tontonoz, P. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med 2006, 12, 1048–1055. [Google Scholar]
- Barthel, A.; Schmoll, D.; Unterman, T.G. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab 2005, 16, 183–189. [Google Scholar]
- Kim, J.W.; Ahn, Y.H. CCAAT/enhancer binding protein regulates the promoter activity of the rat GLUT2 glucose transporter gene in liver cells. Biochem. J 1998, 336, 83–90. [Google Scholar]
- Kawamura, Y.; Tanaka, Y.; Kawamori, R.; Maeda, S. Overexpression of Kruppel-like factor 7 regulates adipocytokine gene expressions in human adipocytes and inhibits glucose-induced insulin secretion in pancreatic beta-cell line. Mol. Endocrinol 2006, 20, 844–856. [Google Scholar]
- Odom, D.T.; Dowell, R.D.; Jacobsen, E.S.; Gordon, W.; Danford, T.W.; MacIsaac, K.D.; Rolfe, P.A.; Conboy, C.M.; Gifford, D.K.; Fraenkel, E. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet 2007, 39, 730–732. [Google Scholar]
- Matschinsky, F.; Liang, Y.; Kesavan, P.; Wang, L.; Froguel, P.; Velho, G.; Cohen, D.; Permutt, M.A.; Tanizawa, Y.; Jetton, T.L. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J. Clin. Invest 1993, 92, 2092–2098. [Google Scholar]
- Leibiger, B.; Leibiger, I.B.; Moede, T.; Kemper, S.; Kulkarni, R.N.; Kahn, C.R.; de Vargas, L.M.; Berggren, P.O. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol. Cell 2001, 7, 559–570. [Google Scholar]
- Da Silva Xavier, G.; Qian, Q.; Cullen, P.J.; Rutter, G.A. Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochem. J 2004, 377, 149–158. [Google Scholar]
- Iynedjian, P.B.; Pilot, P.R.; Nouspikel, T.; Milburn, J.L.; Quaade, C.; Hughes, S.; Ucla, C.; Newgard, C.B. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc. Natl. Acad. Sci. USA 1989, 86, 7838–7842. [Google Scholar]
- da Silva Xavier, G.; Varadi, A.; Ainscow, E.K.; Rutter, G.A. Regulation of gene expression by glucose in pancreatic beta-cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3′-kinase. J. Biol. Chem 2000, 275, 36269–36277. [Google Scholar]
- Shelton, K.D.; Franklin, A.J.; Khoor, A.; Beechem, J.; Magnuson, M.A. Multiple elements in the upstream glucokinase promoter contribute to transcription in insulinoma cells. Mol. Cell Biol 1992, 12, 4578–4589. [Google Scholar]
- Moates, J.M.; Shelton, K.D.; Magnuson, M.A. Characterization of the Pal motifs in the upstream glucokinase promoter: binding of a cell type-specific protein complex correlates with transcriptional activation. Mol. Endocrinol 1996, 10, 723–731. [Google Scholar]
- Macfarlane, W.M.; Smith, S.B.; James, R.F.; Clifton, A.D.; Doza, Y.N.; Cohen, P.; Docherty, K. The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta-cells. J. Biol. Chem 1997, 272, 20936–20944. [Google Scholar]
- Rafiq, I.; Kennedy, H.J.; Rutter, G.A. Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J. Biol. Chem 1998, 273, 23241–23247. [Google Scholar]
- Habener, J.F.; Kemp, D.M.; Thomas, M.K. Minireview: transcriptional regulation in pancreatic development. Endocrinology 2005, 146, 1025–1034. [Google Scholar]
- Watada, H.; Kajimoto, Y.; Umayahara, Y.; Matsuoka, T.; Kaneto, H.; Fujitani, Y.; Kamada, T.; Kawamori, R.; Yamasaki, Y. The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes 1996, 45, 1478–1488. [Google Scholar]
- Moates, J.M.; Nanda, S.; Cissell, M.A.; Tsai, M.J.; Stein, R. BETA2 activates transcription from the upstream glucokinase gene promoter in islet beta-cells and gut endocrine cells. Diabetes 2003, 52, 403–408. [Google Scholar]
- Kim, J.Y.; Chu, K.; Kim, H.J.; Seong, H.A.; Park, K.C.; Sanyal, S.; Takeda, J.; Ha, H.; Shong, M.; Tsai, M.J.; Choi, H.S. Orphan nuclear receptor small heterodimer partner, a novel corepressor for a basic helix-loop-helix transcription factor BETA2/neuroD. Mol. Endocrinol 2004, 18, 776–790. [Google Scholar]
- Yoshida, K.; Murao, K.; Imachi, H.; Cao, W.M.; Yu, X.; Li, J.; Ahmed, R.A.; Kitanaka, N.; Wong, N.C.; Unterman, T.G.; Magnuson, M.A.; Ishida, T. Pancreatic glucokinase is activated by insulin-like growth factor-I. Endocrinology 2007, 148, 2904–2913. [Google Scholar]
- Cissell, M.A.; Zhao, L.; Sussel, L.; Henderson, E.; Stein, R. Transcription factor occupancy of the insulin gene in vivo. Evidence for direct regulation by Nkx2.2. J. Biol. Chem 2003, 278, 751–756. [Google Scholar]
- Sussel, L.; Kalamaras, J.; Hartigan-O’Connor, D.J.; Meneses, J.J.; Pedersen, R.A.; Rubenstein, J.L.; German, M.S. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 1998, 125, 2213–2221. [Google Scholar]
- Iynedjian, P.B.; Gjinovci, A.; Renold, A.E. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J. Biol. Chem 1988, 263, 740–744. [Google Scholar]
- Iynedjian, P.B.; Jotterand, D.; Nouspikel, T.; Asfari, M.; Pilot, P.R. Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J. Biol. Chem 1989, 264, 21824–21829. [Google Scholar]
- Iynedjian, P.B.; Roth, R.A.; Fleischmann, M.; Gjinovci, A. Activation of protein kinase B/cAkt in hepatocytes is sufficient for the induction of expression of the gene encoding glucokinase. Biochem. J 2000, 351, 621–627. [Google Scholar]
- Matsumoto, M.; Ogawa, W.; Teshigawara, K.; Inoue, H.; Miyake, K.; Sakaue, H.; Kasuga, M. Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 2002, 51, 1672–1680. [Google Scholar]
- Kim, J.B.; Sarraf, P.; Wright, M.; Yao, K.M.; Mueller, E.; Solanes, G.; Lowell, B.B.; Spiegelman, B.M. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest 1998, 101, 1–9. [Google Scholar]
- Foretz, M.; Pacot, C.; Dugail, I.; Lemarchand, P.; Guichard, C.; Le Liepvre, X.; Berthelier-Lubrano, C.; Spiegelman, B.; Kim, J.B.; Ferre, P.; Foufelle, F. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell Biol 1999, 19, 3760–3768. [Google Scholar]
- Becard, D.; Hainault, I.; Azzout-Marniche, D.; Bertry-Coussot, L.; Ferre, P.; Foufelle, F. Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice. Diabetes 2001, 50, 2425–2430. [Google Scholar]
- Foretz, M.; Guichard, C.; Ferre, P.; Foufelle, F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. USA 1999, 96, 12737–12742. [Google Scholar]
- Kim, S.Y.; Kim, H.I.; Kim, T.H.; Im, S.S.; Park, S.K.; Lee, I.K.; Kim, K.S.; Ahn, Y.H. SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J. Biol. Chem 2004, 279, 30823–30829. [Google Scholar]
- Liang, G.; Yang, J.; Horton, J.D.; Hammer, R.E.; Goldstein, J.L.; Brown, M.S. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem 2002, 277, 9520–9528. [Google Scholar]
- Gregori, C.; Guillet-Deniau, I.; Girard, J.; Decaux, J.F.; Pichard, A.L. Insulin regulation of glucokinase gene expression: Evidence against a role for sterol regulatory element binding protein 1 in primary hepatocytes. FEBS Lett 2006, 580, 410–414. [Google Scholar]
- Hansmannel, F.; Mordier, S.; Iynedjian, P.B. Insulin induction of glucokinase and fatty acid synthase in hepatocytes: analysis of the roles of sterol-regulatory-element-binding protein-1c and liver X receptor. Biochem. J 2006, 399, 275–283. [Google Scholar]
- Yamagata, K.; Furuta, H.; Oda, N.; Kaisaki, P.J.; Menzel, S.; Cox, N.J.; Fajans, S.S.; Signorini, S.; Stoffel, M.; Bell, G.I. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996, 384, 458–460. [Google Scholar]
- Hirota, K.; Sakamaki, J.; Ishida, J.; Shimamoto, Y.; Nishihara, S.; Kodama, N.; Ohta, K.; Yamamoto, M.; Tanimoto, K.; Fukamizu, A. A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding. J. Biol. Chem 2008, 283, 32432–32441. [Google Scholar]
- Roth, U.; Jungermann, K.; Kietzmann, T. Activation of glucokinase gene expression by hepatic nuclear factor 4alpha in primary hepatocytes. Biochem. J 2002, 365, 223–228. [Google Scholar]
- Kietzmann, T.; Samoylenko, A.; Roth, U.; Jungermann, K. Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood 2003, 101, 907–914. [Google Scholar]
- Roth, U.; Curth, K.; Unterman, T.G.; Kietzmann, T. The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem 2004, 279, 2623–2631. [Google Scholar]
- Kietzmann, T.; Roth, U.; Freimann, S.; Jungermann, K. Arterial oxygen partial pressures reduce the insulin-dependent induction of the perivenously located glucokinase in rat hepatocyte cultures: mimicry of arterial oxygen pressures by H2O2. Biochem. J 1997, 321, 17–20. [Google Scholar]
- Storz, P.; Doppler, H.; Pfizenmaier, K.; Muller, G. Insulin selectively activates STAT5b, but not STAT5a, via a JAK2-independent signalling pathway in Kym-1 rhabdomyosarcoma cells. FEBS Lett 1999, 464, 159–163. [Google Scholar]
- Sadowski, C.L.; Choi, T.S.; Le, M.; Wheeler, T.T.; Wang, L.H.; Sadowski, H.B. Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5*. J. Biol. Chem 2001, 276, 20703–20710. [Google Scholar]
- Sawka-Verhelle, D.; Tartare-Deckert, S.; Decaux, J.F.; Girard, J.; Van Obberghen, E. Stat 5B, activated by insulin in a Jak-independent fashion, plays a role in glucokinase gene transcription. Endocrinology 2000, 141, 1977–1988. [Google Scholar]
- Ribaux, P.; Gjinovci, A.; Sadowski, H.B.; Iynedjian, P.B. Discrimination between signaling pathways in regulation of specific gene expression by insulin and growth hormone in hepatocytes. Endocrinology 2002, 143, 3766–3772. [Google Scholar]
- Ganjam, G.K.; Dimova, E.Y.; Unterman, T.G.; Kietzmann, T. FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J. Biol. Chem 2009, 284, 30783–30797. [Google Scholar]
- Iynedjian, P.B. Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene. Biochem. J 1998, 333, 705–712. [Google Scholar]
- Kim, S.Y.; Kim, H.I.; Park, S.K.; Im, S.S.; Li, T.; Cheon, H.G.; Ahn, Y.H. Liver glucokinase can be activated by peroxisome proliferator-activated receptor-gamma. Diabetes 2004, 53, S66–S70. [Google Scholar]
- Kim, T.H.; Kim, H.; Park, J.M.; Im, S.S.; Bae, J.S.; Kim, M.Y.; Yoon, H.G.; Cha, J.Y.; Kim, K.S.; Ahn, Y.H. Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J. Biol. Chem 2009, 284, 15071–15083. [Google Scholar]
- Lemaigre, F.P.; Durviaux, S.M.; Truong, O.; Lannoy, V.J.; Hsuan, J.J.; Rousseau, G.G. Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and a single cut domain. Proc. Natl. Acad. Sci. USA 1996, 93, 9460–9464. [Google Scholar]
- Lannoy, V.J.; Decaux, J.F.; Pierreux, C.E.; Lemaigre, F.P.; Rousseau, G.G. Liver glucokinase gene expression is controlled by the onecut transcription factor hepatocyte nuclear factor-6. Diabetologia 2002, 45, 1136–1141. [Google Scholar]
- Moller, A.M.; Jensen, N.M.; Pildal, J.; Drivsholm, T.; Borch-Johnsen, K.; Urhammer, S.A.; Hansen, T.; Pedersen, O. Studies of genetic variability of the glucose transporter 2 promoter in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab 2001, 86, 2181–2186. [Google Scholar]
- Laukkanen, O.; Lindstrom, J.; Eriksson, J.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Tuomilehto, J.; Uusitupa, M.; Laakso, M. Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: The Finnish Diabetes Prevention Study. Diabetes 2005, 54, 2256–2260. [Google Scholar]
- Gasperikova, D.; Tribble, N.D.; Stanik, J.; Huckova, M.; Misovicova, N.; van de Bunt, M.; Valentinova, L.; Barrow, B.A.; Barak, L.; Dobransky, R.; Bereczkova, E.; Michalek, J.; Wicks, K.; Colclough, K.; Knight, J.C.; Ellard, S.; Klimes, I.; Gloyn, A.L. Identification of a novel beta-cell glucokinase (GCK) promoter mutation (−71G > NC) that modulates GCK gene expression through loss of allele-specific Sp1 binding causing mild fasting hyperglycemia in humans. Diabetes 2009, 58, 1929–1935. [Google Scholar]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; Potter, S.C.; Erdos, M.R.; Sanna, S.; Hottenga, J.J.; Wheeler, E.; Kaakinen, M.; Lyssenko, V.; Chen, W.M.; Ahmadi, K.; Beckmann, J.S.; Bergman, R.N.; Bochud, M.; Bonnycastle, L.L.; Buchanan, T.A.; Cao, A.; Cervino, A.; Coin, L.; Collins, F.S.; Crisponi, L.; de Geus, E.J.; Dehghan, A.; Deloukas, P.; Doney, A.S.; Elliott, P.; Freimer, N.; Gateva, V.; Herder, C.; Hofman, A.; Hughes, T.E.; Hunt, S.; Illig, T.; Inouye, M.; Isomaa, B.; Johnson, T.; Kong, A.; Krestyaninova, M.; Kuusisto, J.; Laakso, M.; Lim, N.; Lindblad, U.; Lindgren, C.M.; McCann, O.T.; Mohlke, K.L.; Morris, A.D.; Naitza, S.; Orru, M.; Palmer, C.N.; Pouta, A.; Randall, J.; Rathmann, W.; Saramies, J.; Scheet, P.; Scott, L.J.; Scuteri, A.; Sharp, S.; Sijbrands, E.; Smit, J.H.; Song, K.; Steinthorsdottir, V.; Stringham, H.M.; Tuomi, T.; Tuomilehto, J.; Uitterlinden, A.G.; Voight, B.F.; Waterworth, D.; Wichmann, H.E.; Willemsen, G.; Witteman, J.C.; Yuan, X.; Zhao, J.H.; Zeggini, E.; Schlessinger, D.; Sandhu, M.; Boomsma, D.I.; Uda, M.; Spector, T.D.; Penninx, B.W.; Altshuler, D.; Vollenweider, P.; Jarvelin, M.R.; Lakatta, E.; Waeber, G.; Fox, C.S.; Peltonen, L.; Groop, L.C.; Mooser, V.; Cupples, L.A.; Thorsteinsdottir, U.; Boehnke, M.; Barroso, I.; Van Duijn, C.; Dupuis, J.; Watanabe, R.M.; Stefansson, K.; McCarthy, M.I.; Wareham, N.J.; Meigs, J.B.; Abecasis, G.R. Variants in MTNR1B influence fasting glucose levels. Nat. Genet 2009, 41, 77–81. [Google Scholar]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; Lindgren, C.M.; Magi, R.; Morris, A.P.; Randall, J.; Johnson, T.; Elliott, P.; Rybin, D.; Thorleifsson, G.; Steinthorsdottir, V.; Henneman, P.; Grallert, H.; Dehghan, A.; Hottenga, J.J.; Franklin, C.S.; Navarro, P.; Song, K.; Goel, A.; Perry, J.R.; Egan, J.M.; Lajunen, T.; Grarup, N.; Sparso, T.; Doney, A.; Voight, B.F.; Stringham, H.M.; Li, M.; Kanoni, S.; Shrader, P.; Cavalcanti-Proenca, C.; Kumari, M.; Qi, L.; Timpson, N.J.; Gieger, C.; Zabena, C.; Rocheleau, G.; Ingelsson, E.; An, P.; O’Connell, J.; Luan, J.; Elliott, A.; McCarroll, S.A.; Payne, F.; Roccasecca, R.M.; Pattou, F.; Sethupathy, P.; Ardlie, K.; Ariyurek, Y.; Balkau, B.; Barter, P.; Beilby, J.P.; Ben-Shlomo, Y.; Benediktsson, R.; Bennett, A.J.; Bergmann, S.; Bochud, M.; Boerwinkle, E.; Bonnefond, A.; Bonnycastle, L.L.; Borch-Johnsen, K.; Bottcher, Y.; Brunner, E.; Bumpstead, S.J.; Charpentier, G.; Chen, Y.D.; Chines, P.; Clarke, R.; Coin, L.J.; Cooper, M.N.; Cornelis, M.; Crawford, G.; Crisponi, L.; Day, I.N.; de Geus, E.J.; Delplanque, J.; Dina, C.; Erdos, M.R.; Fedson, A. C.; Fischer-Rosinsky, A.; Forouhi, N. G.; Fox, C.S.; Frants, R.; Franzosi, M.G.; Galan, P.; Goodarzi, M.O.; Graessler, J.; Groves, C.J.; Grundy, S.; Gwilliam, R.; Gyllensten, U.; Hadjadj, S.; Hallmans, G.; Hammond, N.; Han, X.; Hartikainen, A.L.; Hassanali, N.; Hayward, C.; Heath, S.C.; Hercberg, S.; Herder, C.; Hicks, A.A.; Hillman, D.R.; Hingorani, A.D.; Hofman, A.; Hui, J.; Hung, J.; Isomaa, B.; Johnson, P.R.; Jorgensen, T.; Jula, A.; Kaakinen, M.; Kaprio, J.; Kesaniemi, Y.A.; Kivimaki, M.; Knight, B.; Koskinen, S.; Kovacs, P.; Kyvik, K.O.; Lathrop, G.M.; Lawlor, D.A.; Le Bacquer, O.; Lecoeur, C.; Li, Y.; Lyssenko, V.; Mahley, R.; Mangino, M.; Manning, A.K.; Martinez-Larrad, M.T.; McAteer, J.B.; McCulloch, L.J.; McPherson, R.; Meisinger, C.; Melzer, D.; Meyre, D.; Mitchell, B.D.; Morken, M.A.; Mukherjee, S.; Naitza, S.; Narisu, N.; Neville, M.J.; Oostra, B.A.; Orru, M.; Pakyz, R.; Palmer, C.N.; Paolisso, G.; Pattaro, C.; Pearson, D.; Peden, J.F.; Pedersen, N.L.; Perola, M.; Pfeiffer, A.F.; Pichler, I.; Polasek, O.; Posthuma, D.; Potter, S.C.; Pouta, A.; Province, M.A.; Psaty, B.M.; Rathmann, W.; Rayner, N.W.; Rice, K.; Ripatti, S.; Rivadeneira, F.; Roden, M.; Rolandsson, O.; Sandbaek, A.; Sandhu, M.; Sanna, S.; Sayer, A.A.; Scheet, P.; Scott, L.J.; Seedorf, U.; Sharp, S.J.; Shields, B.; Sigurethsson, G.; Sijbrands, E.J.; Silveira, A.; Simpson, L.; Singleton, A.; Smith, N.L.; Sovio, U.; Swift, A.; Syddall, H.; Syvanen, A.C.; Tanaka, T.; Thorand, B.; Tichet, J.; Tonjes, A.; Tuomi, T.; Uitterlinden, A.G.; van Dijk, K.W.; van Hoek, M.; Varma, D.; Visvikis-Siest, S.; Vitart, V.; Vogelzangs, N.; Waeber, G.; Wagner, P.J.; Walley, A.; Walters, G.B.; Ward, K.L.; Watkins, H.; Weedon, M.N.; Wild, S.H.; Willemsen, G.; Witteman, J.C.; Yarnell, J.W.; Zeggini, E.; Zelenika, D.; Zethelius, B.; Zhai, G.; Zhao, J.H.; Zillikens, M.C.; Borecki, I.B.; Loos, R.J.; Meneton, P.; Magnusson, P.K.; Nathan, D.M.; Williams, G.H.; Hattersley, A.T.; Silander, K.; Salomaa, V.; Smith, G.D.; Bornstein, S.R.; Schwarz, P.; Spranger, J.; Karpe, F.; Shuldiner, A.R.; Cooper, C.; Dedoussis, G.V.; Serrano-Rios, M.; Morris, A.D.; Lind, L.; Palmer, L.J.; Hu, F.B.; Franks, P.W.; Ebrahim, S.; Marmot, M.; Kao, W.H.; Pankow, J.S.; Sampson, M.J.; Kuusisto, J.; Laakso, M.; Hansen, T.; Pedersen, O.; Pramstaller, P.P.; Wichmann, H.E.; Illig, T.; Rudan, I.; Wright, A.F.; Stumvoll, M.; Campbell, H.; Wilson, J.F.; Bergman, R.N.; Buchanan, T.A.; Collins, F.S.; Mohlke, K.L.; Tuomilehto, J.; Valle, T.T.; Altshuler, D.; Rotter, J.I.; Siscovick, D.S.; Penninx, B.W.; Boomsma, D.I.; Deloukas, P.; Spector, T.D.; Frayling, T.M.; Ferrucci, L.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K.; van Duijn, C. M.; Aulchenko, Y.S.; Cao, A.; Scuteri, A.; Schlessinger, D.; Uda, M.; Ruokonen, A.; Jarvelin, M.R.; Waterworth, D.M.; Vollenweider, P.; Peltonen, L.; Mooser, V.; Abecasis, G.R.; Wareham, N.J.; Sladek, R.; Froguel, P.; Watanabe, R.M.; Meigs, J.B.; Groop, L.; Boehnke, M.; McCarthy, M.I.; Florez, J.C.; Barroso, I. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet 2010, 42, 105–116. [Google Scholar]
- Marz, W.; Nauck, M.; Hoffmann, M.M.; Nagel, D.; Boehm, B.O.; Koenig, W.; Rothenbacher, D.; Winkelmann, B.R. G(−30)A polymorphism in the pancreatic promoter of the glucokinase gene associated with angiographic coronary artery disease and type 2 diabetes mellitus. Circulation 2004, 109, 2844–2849. [Google Scholar]
- Weedon, M.N.; Frayling, T.M.; Shields, B.; Knight, B.; Turner, T.; Metcalf, B.S.; Voss, L.; Wilkin, T.J.; McCarthy, A.; Ben-Shlomo, Y.; Davey Smith, G.; Ring, S.; Jones, R.; Golding, J.; Byberg, L.; Mann, V.; Axelsson, T.; Syvanen, A.C.; Leon, D.; Hattersley, A.T. Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. Diabetes 2005, 54, 576–581. [Google Scholar]
- Tam, C.H.; Ma, R.C.; So, W.Y.; Wang, Y.; Lam, V.K.; Germer, S.; Martin, M.; Chan, J.C.; Ng, M.C. Interaction effect of genetic polymorphisms in glucokinase (GCK) and glucokinase regulatory protein (GCKR) on metabolic traits in healthy Chinese adults and adolescents. Diabetes 2009, 58, 765–769. [Google Scholar]
- Reiling, E.; van ’t Riet, E.; Groenewoud, M.J.; Welschen, L.M.; van Hove, E.C.; Nijpels, G.; Maassen, J.A.; Dekker, J.M.; ’t Hart, L.M. Combined effects of single-nucleotide polymorphisms in GCK, GCKR, G6PC2 and MTNR1B on fasting plasma glucose and type 2 diabetes risk. Diabetologia 2009, 52, 1866–1870. [Google Scholar]
- Stone, L.M.; Kahn, S.E.; Fujimoto, W.Y.; Deeb, S.S.; Porte, D., Jr. A variation at position −30 of the beta-cell glucokinase gene promoter is associated with reduced beta-cell function in middle-aged Japanese-American men. Diabetes 1996, 45, 422–428. [Google Scholar]
- Yamada, K.; Yuan, X.; Ishiyama, S.; Ichikawa, F.; Koyama, K.I.; Koyanagi, A.; Koyama, W.; Nonaka, K. Clinical characteristics of Japanese men with glucokinase gene beta-cell promoter variant. Diabetes Care 1997, 20, 1159–1161. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bae, J.-S.; Kim, T.-H.; Kim, M.-Y.; Park, J.-M.; Ahn, Y.-H. Transcriptional Regulation of Glucose Sensors in Pancreatic β-Cells and Liver: An Update. Sensors 2010, 10, 5031-5053. https://doi.org/10.3390/s100505031
Bae J-S, Kim T-H, Kim M-Y, Park J-M, Ahn Y-H. Transcriptional Regulation of Glucose Sensors in Pancreatic β-Cells and Liver: An Update. Sensors. 2010; 10(5):5031-5053. https://doi.org/10.3390/s100505031
Chicago/Turabian StyleBae, Jin-Sik, Tae-Hyun Kim, Mi-Young Kim, Joo-Man Park, and Yong-Ho Ahn. 2010. "Transcriptional Regulation of Glucose Sensors in Pancreatic β-Cells and Liver: An Update" Sensors 10, no. 5: 5031-5053. https://doi.org/10.3390/s100505031