A New Contextual Parameterization of Evaporative Fraction to Reduce the Reliance of the Ts − VI Triangle Method on the Dry Edge
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area and Field Measurements
2.2. Remote Sensing Data
2.2.1. MODIS Products
2.2.2. Selection of Clear Sky Day Images
3. Methodology
3.1. Parameterization Scheme of EF Using the Traditional Triangle Method
3.2. Proposed New Parameterization Scheme of EF
3.2.1. Basic Framework
3.2.2. Estimation of Near Surface Air Temperature
3.2.3. Determination of the Dry and Wet Edges
4. Results and Discussion
4.1. Accuracy of EF Estimates
4.2. Temporal Variation of EF
4.3. Spatial Comparison of EF Retrieved from the TPS and NPS
4.4. Comparison with Previous Studies
4.5. Extension of the Proposed New Parameterization Scheme
4.6. Sensitivity of the NPS to Input Parameters
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Corbari, C.; Bissolati, M.; Mancini, M. Multi-scales and multi-satellites estimates of evapotranspiration with a residual energy balance model in the Muzza agricultural district in Northern Italy. J. Hydrol. 2015, 524, 243–254. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Churkina, G.; Running, S.W.; Schloss, A.L. The participants of the Potsdam NPP model intercomparison, comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Glob. Change Biol. 1999, 5, 46–55. [Google Scholar] [CrossRef]
- Nemani, R.R.; White, M.A.; Thornton, P.; Nishida, K.; Reddy, S.; Jenkins, J.; Running, S. Recent trends in hydrologic balance have enhanced the carton sink in the United States. Geophys. Res. Lett. 2002, 29, 1468. [Google Scholar] [CrossRef]
- Gan, G.; Gao, Y. Estimating time series of land surface energy fluxes using optimized two source energy balance schemes: Model formulation, calibration and validation. Agric. Forest Meteorol. 2015, 208, 62–75. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorological data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Zhang, Y.; Jorge, L.; Pena-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kustas, W.P.; Norman, J.M. Use of remote sensing for evapotranspiration monitoring over land surface. Hydrol. Sci. J. 1996, 41, 495–516. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Li, Z.L.; Chen, K.S.; Zhu, Y.; Liu, W. Verification of land surface evapotranspiration estimation from remote sensing spatial contextual information. Hydrol. Process. 2012, 26, 2283–2293. [Google Scholar] [CrossRef]
- Tang, R.L.; Li, Z.L.; Tang, B.H. An application of the triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Minacapilli, M.; Consoli, S.; Vanella, D.; Ciraolo, G.; Motisi, A. A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens. Environ. 2016, 174, 10–23. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Gurney, R.J.; Hsu, A.Y.; Ormsby, J.P. FIFE: The variation in energy partition at surface flux sites. In Remote Sensing and Large-Scale Processes, Proceedings of the IAHS Third International Assembly, Baltimore, MD, USA, 10–19 May 1989; Rango, A., Ed.; IAHS Publication: Wallingford, UK; Volume 186, pp. 67–74.
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Estimating evapotranspiration of European forests from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products. Remote Sens. Environ. 2005, 96, 256–276. [Google Scholar] [CrossRef]
- Wang, K.C.; Li, Z.Q.; Cribb, M. Estimation of evaporative fraction from a combination of day and night land surface temperature and NDVI: A new method to determine the Priestley-Taylor parameter. Remote Sens. Environ. 2006, 102, 293–305. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S.; Guo, W.; Jutla, A.S.; Senarath, S.U.S.; Ramsay, B.H. A satellite-based daily actual evapotranspiration estimation algorithm over South Florida. Glob. Planet. Chang. 2009, 67, 62–77. [Google Scholar] [CrossRef]
- Lu, J.; Tang, R.; Tang, H.; Li, Z.L. Derivation of daily evaporative fraction based on temporal variations in surface temperature, air temperature, and net radiation. Remote Sens. 2013, 5, 5369–5396. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A. Evaluation of daytime evaporative fraction from MODIS TOA radiances using FLUXNET observations. Remote Sens. 2014, 6, 5959–5975. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. Estimation of surface evaporation map over Southern Great Plains using remote sensing data. Water Resour. Res. 2001, 37, 329–340. [Google Scholar] [CrossRef]
- Nishida, K.; Nemani, R.R.; Running, S.W.; Glassy, J.M. An operational remote sensing algorithm of land surface evaporation. J. Geophys. Res. 2003, 108, 469–474. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG/SEVIRI data in the Senegal River basin. Remote Sens. Environ. 2008, 112, 242–1255. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys. Res. Lett. 1999, 26, 2773–2776. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. An intercomparison of regional latent heat flux estimation using remote sensing data. Int. J. Remote Sens. 2003, 24, 2221–2236. [Google Scholar] [CrossRef]
- Venturini, V.; Bisht, G.; Islam, S.; Jiang, L. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida. Remote Sens. Environ. 2004, 93, 77–86. [Google Scholar] [CrossRef]
- Batra, N.; Islam, S.; Venturini, V.; Bisht, G.; Jiang, L. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains. Remote Sens. Environ. 2006, 103, 1–15. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the “Triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef]
- Bhattacharya, B.K.; Mallick, K.; Patel, N.K.; Parihar, J.S. Regional clear sky evapotranspiration over agricultural land using remote sensing data from Indian geostationary meteorological satellite. J. Hydrol. 2010, 387, 65–80. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L.B. Using covariates to spatially interpolate moisture availability in the Murray-Darling Basin: A novel use of remotely sensed data. Remote Sens. Environ. 2002, 79, 199–212. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, J.; Su, H.; Sun, X.; Chen, S.; Xia, J. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval. Sensors 2008, 8, 6165–6187. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Singh, V.P.; Scanlon, B.R. Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation. J. Geophys. Res. 2012, 117, 214–221. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, R.; Zhao, W.; Tang, B.; Wu, H.; Shao, K.; Li, Z.L. Surface soil water content estimation from thermal remote sensing based on the temporal variation of the land surface temperature. Remote Sens. 2014, 6, 3170–3187. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, K.P.; Mulhern, T.; Goward, S.N.; Cihlar, J. Validation of the Geocoding and Compositing System (GEOCOMP) using contextual analysis for AVHRR images. Int. J. Remote Sens. 1997, 18, 3055–3068. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Hanan, N.; Kabat, P.; Lesch, L. A remote sensing study of the NDVT–Ts relationship and the transpiration from sparse vegetation in the Sahel based on high-resolution satellite data. Remote Sens. Environ. 1999, 69, 224–240. [Google Scholar] [CrossRef]
- Lakshmi, V.; Czajkowski, K.; Dubayah, R.; Susskind, J. Land surface air temperature mapping using TOVS and AVHRR. Int. J. Remote Sens. 2001, 22, 643–662. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Norgaard, A.; Fensholt, R.; Eklundh, L. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens. Environ. 2007, 110, 262–274. [Google Scholar] [CrossRef]
- Nieto, H.; Sandholt, I.; Aguada, I.; Chuvieco, E.; Stisen, S. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sens. Environ. 2011, 115, 107–116. [Google Scholar] [CrossRef]
- Zhu, W.B.; Lv, A.F.; Jia, S.F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 32–73. [Google Scholar] [CrossRef]
- Prince, S.D.; Goetz, S.J.; Dubayah, R.O.; Czajkowski, K.P.; Thawley, M. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations: Comparison with field observations. J. Hydrol. 1998, 213, 230–249. [Google Scholar] [CrossRef]
- Venturini, V.; Islam, S.; Rodriguez, L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sens. Environ. 2008, 112, 132–141. [Google Scholar] [CrossRef]
- Sun, J.; Salvucci, G.D.; Entekhabi, D. Estimates of evapotranspiration from MODIS and AMSR-E land surface temperature and moisture over the Southern Great Plains. Remote Sens. Environ. 2012, 127, 44–59. [Google Scholar] [CrossRef]
- Chen, J.M.; Feng, D.; Chen, M. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite derived surface parameter. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2230–2238. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N.; Gui, J.; Kustas, W.P.; Humes, K.S. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Gallo, K.; Tarpley, D.; Mitchell, K.; Csiszar, I.; Owen, T.; Reed, B. Monthly fractional green vegetation cover associated with land cover classed of the conterminous USA. Geophys. Res. Lett. 2001, 28, 2089–2092. [Google Scholar] [CrossRef]
- Montandon, L.M.; Small, E.E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. [Google Scholar] [CrossRef]
- Zhu, W.B.; Lv, A.F.; Jia, S.F.; Yan, J.B.; Rashid, M. Retrievals of all-weather daytime air temperature with high accuracy from MODIS atmosphere products. Remote Sens. Environ. 2017, 189, 152–163. [Google Scholar] [CrossRef]
- Sun, L.; Sun, R.; Li, X.; Liang, S.; Zhang, R. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information. Agric. Forest Meteorol. 2012, 166, 175–187. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, J.W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteorol. 1989, 28, 276–284. [Google Scholar] [CrossRef]
- Goward, S.N.; Waring, R.H.; Dye, D.G.; Yang, J.L. Ecological remote-sensing at OTTER: Satellite macroscale observations. Ecol. Appl. 1994, 4, 322–343. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface soil moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water-deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Komatsu, T.S. Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surface. J. Appl. Meteorol. 2003, 42, 1330–1334. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. Forest Meteorol. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Zaksek, K.; Schroedter-Homscheidt, M. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments. ISPRS J. Photogramm. Remote Sens. 2009, 64, 414–421. [Google Scholar] [CrossRef]
- Tomas, A.; Nieto, H.; Guzinski, R.; Salas, J.; Sandholt, I.; Berliner, P. Validation and scale dependencies of the triangle method for the evaporative fraction estimation over heterogeneous areas. Remote Sens. Environ. 2014, 152, 493–511. [Google Scholar] [CrossRef]
- Trezza, R.; Allen, R.G.; Tasumi, M. Estimation of actual evapotranspiration along the middle Rio Grande of New Mexico using MODIS and Landsat imagery with the METRIC model. Remote Sens. 2013, 5, 5397–5423. [Google Scholar] [CrossRef]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating sub-pixel surface temperature and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Garcia, M.; Fernandez, N.; Villagarcia, L.; Domingo, F.; Puigdefabregas, J.; Sandholt, I. Accuracy of the Temperature-Vegetation Dryness Index using MODIS under water-limited vs. energy-limited evapotranspiration conditions. Remote Sens. Environ. 2014, 149, 100–117. [Google Scholar] [CrossRef]
- Tang, R.L.; Li, Z.L.; Chen, K.S. Validation MODIS-derived land surface evapotranspiration with in situ measurements at two AmeriFlux sites in a semiarid region. J. Geophys. Res. 2011, 116, 220–237. [Google Scholar] [CrossRef]
- Kim, J.; Hogue, T.S. Evaluation of a MODIS triangle-based evapotranspiration algorithm for semi-arid regions. J. Appl. Remote Sens. 2013, 7, 073493. [Google Scholar] [CrossRef]
- Choi, M.; Kustas, W.P.; Anderson, M.C.; Allen, R.G.; Li, F.Q.; Kjaersgaard, J.H. An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, US) during SMACEX. Agric. Forest Meteorol. 2009, 149, 2082–2097. [Google Scholar] [CrossRef]
Approach | Empirical Approach | Theoretical Approach |
---|---|---|
Principle | Statistical regression | Surface energy balance principle |
Advantages | It is simple and can be performed based entirely on remote sensing data. | It is performed through theoretical derivation and can remove the subjectivity involved; the theoretical dry edge determined represents the maximum water stress. |
Disadvantages | Establishment of regression models involves subjectivity; the observed dry edge determined is not assigned the maximum water stress. | A large number of parameters are needed such as air temperature, near surface vapor pressure, net radiation, aerodynamic resistance. |
Site | Latitude | Longitude | Altitude (Meter) | Land Cover |
---|---|---|---|---|
E2 | 38.306N | 97.301W | 450 | Cultivated crops |
E4 | 37.953N | 98.329W | 513 | Grassland |
E7 | 37.383N | 96.18W | 283 | Pasture |
E8 | 37.333N | 99.309W | 664 | Grassland |
E9 | 37.133N | 97.266W | 386 | Grassland |
E12 | 36.841N | 96.427W | 331 | Grassland |
E13 | 36.605N | 97.485W | 318 | Grassland |
E18 | 35.687N | 95.856W | 217 | Pasture |
E20 | 35.564N | 96.988W | 309 | Grassland |
E22 | 35.354N | 98.977W | 465 | Shrubland |
E27 | 35.269N | 96.74W | 300 | Grassland |
Statistical Measure | Formula |
---|---|
Mean absolute error | |
Root mean square error | |
Relative root mean square error | |
Bias | |
Coefficient of determination | |
Correlation coefficient |
Site | n | EF Retrieved from NPS | EF Retrieved from TPS | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | B | R2 | MAE | RMSE | B | ||
E2 | 19 | 0.73 | 0.11 | 0.12 | 0.00 | 0.75 | 0.10 | 0.12 | −0.01 |
E4 | 18 | 0.65 | 0.08 | 0.10 | 0.04 | 0.60 | 0.09 | 0.11 | 0.05 |
E7 | 18 | 0.64 | 0.15 | 0.20 | −0.14 | 0.65 | 0.15 | 0.20 | −0.14 |
E8 | 16 | 0.10 | 0.17 | 0.22 | −0.10 | 0.13 | 0.16 | 0.21 | −0.10 |
E9 | 19 | 0.83 | 0.08 | 0.12 | −0.04 | 0.75 | 0.08 | 0.13 | −0.03 |
E12 | 17 | 0.79 | 0.11 | 0.14 | 0.05 | 0.77 | 0.11 | 0.15 | 0.05 |
E13 | 16 | 0.38 | 0.11 | 0.14 | 0.03 | 0.41 | 0.11 | 0.14 | 0.03 |
E18 | 13 | 0.81 | 0.08 | 0.11 | 0.01 | 0.81 | 0.08 | 0.11 | 0.00 |
E20 | 15 | 0.74 | 0.10 | 0.12 | −0.04 | 0.79 | 0.09 | 0.11 | −0.05 |
E22 | 10 | 0.52 | 0.09 | 0.12 | −0.09 | 0.33 | 0.09 | 0.11 | −0.07 |
E27 | 16 | 0.70 | 0.10 | 0.10 | −0.04 | 0.73 | 0.09 | 0.10 | −0.04 |
Total | 178 | 0.58 | 0.11 | 0.14 | −0.03 | 0.59 | 0.11 | 0.14 | −0.03 |
Study | Study Location | Sensor Used | Accuracy Reported |
---|---|---|---|
Jiang and Islam [25] | Southern Great Plains, USA | AVHRR | RMSE of 0.12, bias of −0.08, R2 of 0.30 |
Nishida et al. [22] | Continental USA | MODIS | RMSE of 0.17, bias of 0.01, R2 of 0.71 |
Venturini et al. [26] | South Florida, USA | MODIS, AVHRR | RMSE varied from 0.08 to 0.19 (mean value 0.13) and R2 ranged from 0.40 to 0.71 (mean value 0.58) |
Wang et al. [17] | Southern Great Plains, USA | MODIS | MAE of 0.14, bias of −0.03, R2 of 0.52 |
Stisen et al. [23] | Senegal River basin, West Africa | MSG-SEVIRI | RMSE of 0.16, bias of −0.04, R2 of 0.35 |
Tang et al. [64] | Audubon Ranch and Kendall Grassland, southwest of USA | MODIS | RMSE varied from 0.10 to 0.12 and bias ranged from 0.04 to 0.07 |
Kim and Hogue [65] | San Pedro River basin, Arizona | MODIS | MAE varied from 0.06 to 0.22, RMSE ranged from 0.11 to 0.25 and R2 ranged from 0.01 to 0.64 |
Tomas et al. [59] | Henares River basin, Spain | Landsat5-TM, Envisat-AATSR/MERIS, MSG-SEVIRI | RMSE varied from 0.11 to 0.23 and R2 ranged from 0.24 to 0.77 |
This study | Southern Great Plains, USA | MODIS | MAE of 0.11, RMSE of 0.14, bias of 0.03, R2 of 0.58 |
Site | EF Retrieved from NPS | EF Retrieved from TPS | ||||||
---|---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | B | R2 | MAE | RMSE | B | |
E2 | 0.66 | 0.11 | 0.13 | 0.00 | 0.74 | 0.10 | 0.12 | −0.05 |
E4 | 0.62 | 0.08 | 0.10 | 0.05 | 0.53 | 0.09 | 0.11 | 0.03 |
E7 | 0.69 | 0.15 | 0.19 | −0.14 | 0.69 | 0.16 | 0.21 | −0.16 |
E8 | 0.16 | 0.16 | 0.20 | −0.10 | 0.17 | 0.17 | 0.21 | −0.10 |
E9 | 0.75 | 0.10 | 0.14 | −0.04 | 0.71 | 0.09 | 0.14 | −0.05 |
E12 | 0.75 | 0.13 | 0.16 | 0.06 | 0.74 | 0.11 | 0.15 | 0.04 |
E13 | 0.20 | 0.13 | 0.16 | 0.03 | 0.39 | 0.11 | 0.14 | −0.01 |
E18 | 0.81 | 0.08 | 0.11 | 0.02 | 0.75 | 0.11 | 0.12 | −0.03 |
E20 | 0.75 | 0.09 | 0.12 | −0.04 | 0.75 | 0.11 | 0.14 | −0.08 |
E22 | 0.39 | 0.11 | 0.12 | −0.09 | 0.28 | 0.13 | 0.15 | −0.12 |
E27 | 0.73 | 0.09 | 0.10 | −0.03 | 0.71 | 0.11 | 0.12 | −0.06 |
Total | 0.56 | 0.11 | 0.14 | −0.02 | 0.58 | 0.12 | 0.15 | −0.05 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Lv, A.; Jia, S.; Yan, J. A New Contextual Parameterization of Evaporative Fraction to Reduce the Reliance of the Ts − VI Triangle Method on the Dry Edge. Remote Sens. 2017, 9, 26. https://doi.org/10.3390/rs9010026
Zhu W, Lv A, Jia S, Yan J. A New Contextual Parameterization of Evaporative Fraction to Reduce the Reliance of the Ts − VI Triangle Method on the Dry Edge. Remote Sensing. 2017; 9(1):26. https://doi.org/10.3390/rs9010026
Chicago/Turabian StyleZhu, Wenbin, Aifeng Lv, Shaofeng Jia, and Jiabao Yan. 2017. "A New Contextual Parameterization of Evaporative Fraction to Reduce the Reliance of the Ts − VI Triangle Method on the Dry Edge" Remote Sensing 9, no. 1: 26. https://doi.org/10.3390/rs9010026
APA StyleZhu, W., Lv, A., Jia, S., & Yan, J. (2017). A New Contextual Parameterization of Evaporative Fraction to Reduce the Reliance of the Ts − VI Triangle Method on the Dry Edge. Remote Sensing, 9(1), 26. https://doi.org/10.3390/rs9010026